170 research outputs found

    Patent Human Infections with the Whipworm, Trichuris trichiura, Are Not Associated with Alterations in the Faecal Microbiota

    Get PDF
    Background: The soil-transmitted helminth (STH), Trichuris trichiura colonises the human large intestine where it may modify inflammatory responses, an effect possibly mediated through alterations in the intestinal microbiota. We hypothesised that patent T. trichiura infections would be associated with altered faecal microbiota and that anthelmintic treatment would induce a microbiota resembling more closely that observed in uninfected individuals. Materials and Methods: School children in Ecuador were screened for STH infections and allocated to 3 groups: uninfected, T. trichiura only, and mixed infections with T. trichiura and Ascaris lumbricoides. A sample of uninfected children and those with T. trichiura infections only were given anthelmintic treatment. Bacterial community profiles in faecal samples were studied by 454 pyrosequencing of 16 S rRNA genes. Results: Microbiota analyses of faeces were done for 97 children: 30 were uninfected, 17 were infected with T. trichiura, and 50 with T. trichiura and A. lumbricoides. Post-treatment samples were analyzed for 14 children initially infected with T. trichiura alone and for 21 uninfected children. Treatment resulted in 100% cure of STH infections. Comparisons of the microbiota at different taxonomic levels showed no statistically significant differences in composition between uninfected children and those with T. trichiura infections. We observed a decreased proportional abundance of a few bacterial genera from the Clostridia class of Firmicutes and a reduced bacterial diversity among children with mixed infections compared to the other two groups, indicating a possible specific effect of A. lumbricoides infection. Anthelmintic treatment of children with T. trichiura did not alter faecal microbiota composition. Discussion: Our data indicate that patent human infections with T. trichiura may have no effect on faecal microbiota but that A. lumbricoides colonisation might be associated with a disturbed microbiota. Our results also catalogue the microbiota of rural Ecuadorians and indicate differences with individuals from more urban industrialised societies

    Visualization and quantitation of the expression of microRNAs and their target genes in neuroblastoma single cells using imaging cytometry

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>MicroRNAs (miRNAs) are regulatory molecules that play an important role in many physiological processes, including cell growth, differentiation, and apoptosis. In addition to modulating normal cellular functions, it has also been reported that miRNAs are involved in the development of many pathologies, including cardiovascular diseases, cancer, inflammation, and neurodegeneration. Methods for the sensitive detection and measurement of specific miRNAs and their cellular targets are essential for both basic research endeavours, as well as diagnostic efforts aimed at understanding the role of miRNAs in disease processes.</p> <p>Findings</p> <p>In this study, we describe a novel, imaging cytometry-based protocol that allows for simultaneous visualisation and quantification of miRNAs and their putative targets. We validated this methodology in a neuronal cell line by examining the relationship of the miRNA miR-124 and its known target, cyclin dependent kinase 6 (CDK6). We found that ectopic overexpression of miR-124 resulted in the downregulation of CDK6, decreased cellular proliferation, and induced cellular morphological changes.</p> <p>Conclusions</p> <p>This method is suitable for analysing the expression and cellular localisation of miRNAs and target proteins in small cell subsets within a heterogeneous cell suspension. We believe that our cytometry-based methodology will be easily adaptable to miRNA studies in many areas of biomedical research including neuroscience, stem cell biology, immunology, and oncology.</p

    Enzymatic hydrolysis of sorghum straw using native cellulase produced by T. reesei NCIM 992 under solid state fermentation using rice straw

    Get PDF
    Cellulose is a major constituent of renewable lignocellulosic waste available in large quantities and is considered the most important reservoir of carbon for the production of glucose, for alternative fuel and as a chemical feedstock. Over the past decade, the emphasis has been on the enzymatic hydrolysis of cellulose to glucose and the efficiency of which depends on source of cellulosic substrate, its composition, structure, pretreatment process, and reactor design. In the present study, efforts were made to produce cellulase enzyme using rice straw. The produced enzyme was used for the hydrolysis of selected lignocellulosic substrate, i.e., sorghum straw. When rice straw was used as a substrate for cellulase production under solid state fermentation, the highest enzyme activity obtained was 30.7 FPU/gds, using T. reesei NCIM 992. 25 FPU/g of cellulase was added to differently treated (native, alkali treated, alkali treated followed by 3% acid treated and alkali treated followed by 3 and 5% acid treated) sorghum straw and hydrolysis was carried out at 50 °C for 60 h. 42.5% hydrolysis was obtained after 36 h of incubation. Optimization of enzyme loading, substrate concentration, temperature, time and buffer yielded a maximum of 546.00 ± 0.55 mg/g sugars (54.60 ± 0.44 g/l) with an improved hydrolysis efficiency of 70 ± 0.45%. The enzymatic hydrolyzate can be used for fermentation of ethanol by yeasts

    MR imaging in sports-related glenohumeral instability

    Get PDF
    Sports-related shoulder pain and injuries represent a common problem. In this context, glenohumeral instability is currently believed to play a central role either as a recognized or as an unrecognized condition. Shoulder instabilities can roughly be divided into traumatic, atraumatic, and microtraumatic glenohumeral instabilities. In athletes, atraumatic and microtraumatic instabilities can lead to secondary impingement syndromes and chronic damage to intraarticular structures. Magnetic resonance (MR) arthrography is superior to conventional MR imaging in the diagnosis of labro-ligamentous injuries, intrinsic impingement, and SLAP (superior labral anteroposterior) lesions, and thus represents the most informative imaging modality in the overall assessment of glenohumeral instability. This article reviews the imaging criteria for the detection and classification of instability-related injuries in athletes with special emphasis on the influence of MR findings on therapeutic decisions

    The Metagenome of an Anaerobic Microbial Community Decomposing Poplar Wood Chips

    Get PDF
    This study describes the composition and metabolic potential of a lignocellulosic biomass degrading community that decays poplar wood chips under anaerobic conditions. We examined the community that developed on poplar biomass in a non-aerated bioreactor over the course of a year, with no microbial inoculation other than the naturally occurring organisms on the woody material. The composition of this community contrasts in important ways with biomass-degrading communities associated with higher organisms, which have evolved over millions of years into a symbiotic relationship. Both mammalian and insect hosts provide partial size reduction, chemical treatments (low or high pH environments), and complex enzymatic ‘secretomes’ that improve microbial access to cell wall polymers. We hypothesized that in order to efficiently degrade coarse untreated biomass, a spontaneously assembled free-living community must both employ alternative strategies, such as enzymatic lignin depolymerization, for accessing hemicellulose and cellulose and have a much broader metabolic potential than host-associated communities. This would suggest that such a community would make a valuable resource for finding new catalytic functions involved in biomass decomposition and gaining new insight into the poorly understood process of anaerobic lignin depolymerization. Therefore, in addition to determining the major players in this community, our work specifically aimed at identifying functions potentially involved in the depolymerization of cellulose, hemicelluloses, and lignin, and to assign specific roles to the prevalent community members in the collaborative process of biomass decomposition. A bacterium similar to Magnetospirillum was identified among the dominant community members, which could play a key role in the anaerobic breakdown of aromatic compounds. We suggest that these compounds are released from the lignin fraction in poplar hardwood during the decay process, which would point to lignin-modification or depolymerization under anaerobic conditions

    What scans we will read: imaging instrumentation trends in clinical oncology

    Get PDF
    Oncological diseases account for a significant portion of the burden on public healthcare systems with associated costs driven primarily by complex and long-lasting therapies. Through the visualization of patient-specific morphology and functional-molecular pathways, cancerous tissue can be detected and characterized non- invasively, so as to provide referring oncologists with essential information to support therapy management decisions. Following the onset of stand-alone anatomical and functional imaging, we witness a push towards integrating molecular image information through various methods, including anato-metabolic imaging (e.g., PET/ CT), advanced MRI, optical or ultrasound imaging. This perspective paper highlights a number of key technological and methodological advances in imaging instrumentation related to anatomical, functional, molecular medicine and hybrid imaging, that is understood as the hardware-based combination of complementary anatomical and molecular imaging. These include novel detector technologies for ionizing radiation used in CT and nuclear medicine imaging, and novel system developments in MRI and optical as well as opto-acoustic imaging. We will also highlight new data processing methods for improved non-invasive tissue characterization. Following a general introduction to the role of imaging in oncology patient management we introduce imaging methods with well-defined clinical applications and potential for clinical translation. For each modality, we report first on the status quo and point to perceived technological and methodological advances in a subsequent status go section. Considering the breadth and dynamics of these developments, this perspective ends with a critical reflection on where the authors, with the majority of them being imaging experts with a background in physics and engineering, believe imaging methods will be in a few years from now. Overall, methodological and technological medical imaging advances are geared towards increased image contrast, the derivation of reproducible quantitative parameters, an increase in volume sensitivity and a reduction in overall examination time. To ensure full translation to the clinic, this progress in technologies and instrumentation is complemented by progress in relevant acquisition and image-processing protocols and improved data analysis. To this end, we should accept diagnostic images as “data”, and – through the wider adoption of advanced analysis, including machine learning approaches and a “big data” concept – move to the next stage of non-invasive tumor phenotyping. The scans we will be reading in 10 years from now will likely be composed of highly diverse multi- dimensional data from multiple sources, which mandate the use of advanced and interactive visualization and analysis platforms powered by Artificial Intelligence (AI) for real-time data handling by cross-specialty clinical experts with a domain knowledge that will need to go beyond that of plain imaging
    corecore