34 research outputs found

    Change in adiposity is associated with change in glycoprotein acetyls but not hsCRP in adolescents with severe obesity.

    Get PDF
    BACKGROUND Obesity-associated chronic inflammation mediates the development of adverse cardiometabolic outcomes. There are sparse data on associations between severe obesity and inflammatory biomarkers in adolescence; most are cross-sectional and limited to acute phase reactants. Here, we investigate associations between adiposity measures and inflammatory biomarkers in children and adolescents with severe obesity both cross-sectionally and longitudinally. METHODS From the Childhood Overweight Biorepository of Australia (COBRA) study, a total of n = 262 participants, mean age 11.5 years (SD 3.5) with obesity had measures of adiposity (body mass index, BMI; % above the 95th BMI-centile, %>95th BMI-centile; waist circumference, WC; waist/height ratio, WtH; % total body fat, %BF; % truncal body fat, %TF) and inflammation biomarkers (glycoprotein acetyls, GlycA; high-sensitivity C-Reactive Protein, hsCRP; white blood cell count, WBC; and neutrophil/lymphocyte ratio, NLR) assessed at baseline. Ninety-eight individuals at mean age of 15.9 years (3.7) participated in a follow-up study 5.6 (2.1) years later. Sixty-two individuals had longitudinal data. Linear regression models, adjusted for age and sex for cross-sectional analyses were applied. To estimate longitudinal associations between change in adiposity measures with inflammation biomarkers, models were adjusted for baseline measures of adiposity and inflammation. RESULTS All adiposity measures were cross-sectionally associated with GlycA, hsCRP and WBC at both time points. Change in BMI, %>95th BMI-centile, WC, WtH and %TF were associated with concomitant change in GlycA and WBC, but not in hsCRP and NLR. CONCLUSION GlycA and WBC but not hsCRP and NLR may be useful in assessing adiposity-related severity of chronic inflammation over time

    HIF3A cord blood methylation and systolic blood pressure at 4 years - a population-based cohort study

    Get PDF
    Methylation levels at the hypoxia-inducible factor 3 alpha gene (HIF3A) in blood have been linked to body mass index (BMI) in adults. Despite evidence implicating HIF3A in angiogenesis and metabolism, no studies have examined links between HIF3A methylation in early life and cardiovascular health. Here, we investigated the relationship between HIF3A methylation in blood at birth and 12 months of age with cardiovascular measures at 4 years. We also examined influences of prenatal exposures, birth outcomes, and genetic variation. Methylation of two HIF3A promoter regions in cord blood was measured using Sequenom EpiTYPER mass-spectrometry. The first promoter region was also measured in 12-month blood. Four-year cardiovascular measures included blood pressure, pulse wave velocity, and aortic and carotid intima-media thickness. Associations were tested using partial correlation tests and linear regression modelling. Methylation of the first HIF3A promoter in cord and 12-month blood was not associated with four-year measures. There was modest evidence of an association between DNA methylation at the second HIF3A promoter in cord blood and four-year systolic blood pressure (n = 353, r = 0.12, p = 0.03). In sex-stratified analysis, methylation of the second promoter was modestly associated with systolic and diastolic blood pressure (r = 0.16, p = 0.03 for both) in males only. In conclusion, HIF3A methylation at birth shows some evidence of an association with later blood pressure in childhood. Further work should determine whether this relationship persists into later childhood, and should assess potential functional links between HIF3A methylation and cardiovascular health more generally

    Decreasing severity of obesity from early to late adolescence and young adulthood associates with longitudinal metabolomic changes implicated in lower cardiometabolic disease risk

    Get PDF
    Background Obesity in childhood is associated with metabolic dysfunction, adverse subclinical cardiovascular phenotypes and adult cardiovascular disease. Longitudinal studies of youth with obesity investigating changes in severity of obesity with metabolomic profiles are sparse. We investigated associations between (i) baseline body mass index (BMI) and follow-up metabolomic profiles; (ii) change in BMI with follow-up metabolomic profiles; and (iii) change in BMI with change in metabolomic profiles (mean interval 5.5 years). Methods Participants (n = 98, 52% males) were recruited from the Childhood Overweight Biorepository of Australia study. At baseline and follow-up, BMI and the % >95th BMI-centile (percentage above the age-, and sex-specific 95th BMI-centile) indicate severity of obesity, and nuclear magnetic resonance spectroscopy profiling of 72 metabolites/ratios, log-transformed and scaled to standard deviations (SD), was performed in fasting serum. Fully adjusted linear regression analyses were performed.Results Mean (SD) age and % >95th BMI-centile were 10.3 (SD 3.5) years and 134.6% (19.0) at baseline, 15.8 (3.7) years and 130.7% (26.2) at follow-up. Change in BMI over time, but not baseline BMI, was associated with metabolites at follow-up. Each unit (kg/m2) decrease in sex- and age-adjusted BMI was associated with change (SD; 95% CI; p value) in metabolites of: alanine (-0.07; -0.11 to -0.04; p p p p p = 0.003), monounsaturated fatty acids (-0.04; -0.07 to -0.01; p = 0.004), ratio of ApoB/ApoA1 (-0.05; -0.07 to -0.02; p = 0.001), VLDL-cholesterol (-0.04; -0.06 to -0.01; p = 0.01), HDL cholesterol (0.05; 0.08 to 0.1; p = 0.01), pyruvate (-0.08; -0.11 to -0.04; p p = 0.005) and 3-hydroxybuturate (0.07; 0.02 to 0.11; p = 0.01). Results using the % >95th BMI-centile were largely consistent with age- and sex-adjusted BMI measures.Conclusions In children and young adults with obesity, decreasing the severity of obesity was associated with changes in metabolomic profiles consistent with lower cardiovascular and metabolic disease risk in adults.</p

    Genome-Wide Analyses of Vocabulary Size in Infancy and Toddlerhood:Associations With Attention-Deficit/Hyperactivity Disorder, Literacy, and Cognition-Related Traits

    Get PDF
    Background: The number of words children produce (expressive vocabulary) and understand (receptive vocabulary) changes rapidly during early development, partially due to genetic factors. Here, we performed a meta–genome-wide association study of vocabulary acquisition and investigated polygenic overlap with literacy, cognition, developmental phenotypes, and neurodevelopmental conditions, including attention-deficit/hyperactivity disorder (ADHD). Methods: We studied 37,913 parent-reported vocabulary size measures (English, Dutch, Danish) for 17,298 children of European descent. Meta-analyses were performed for early-phase expressive (infancy, 15–18 months), late-phase expressive (toddlerhood, 24–38 months), and late-phase receptive (toddlerhood, 24–38 months) vocabulary. Subsequently, we estimated single nucleotide polymorphism–based heritability (SNP-h2) and genetic correlations (rg) and modeled underlying factor structures with multivariate models. Results: Early-life vocabulary size was modestly heritable (SNP-h2 = 0.08–0.24). Genetic overlap between infant expressive and toddler receptive vocabulary was negligible (rg = 0.07), although each measure was moderately related to toddler expressive vocabulary (rg = 0.69 and rg = 0.67, respectively), suggesting a multifactorial genetic architecture. Both infant and toddler expressive vocabulary were genetically linked to literacy (e.g., spelling: rg = 0.58 and rg = 0.79, respectively), underlining genetic similarity. However, a genetic association of early-life vocabulary with educational attainment and intelligence emerged only during toddlerhood (e.g., receptive vocabulary and intelligence: rg = 0.36). Increased ADHD risk was genetically associated with larger infant expressive vocabulary (rg = 0.23). Multivariate genetic models in the ALSPAC (Avon Longitudinal Study of Parents and Children) cohort confirmed this finding for ADHD symptoms (e.g., at age 13; rg = 0.54) but showed that the association effect reversed for toddler receptive vocabulary (rg = −0.74), highlighting developmental heterogeneity. Conclusions: The genetic architecture of early-life vocabulary changes during development, shaping polygenic association patterns with later-life ADHD, literacy, and cognition-related traits.</p

    Combined genetic and epigenetic analysis to identify early life determinants of complex phenotype

    No full text
    © 2019 Toby Edward MansellThere is now considerable evidence indicating that risk of many complex diseases in adulthood may be influenced by exposure to environmental exposures in utero. A growing number of studies suggest epigenetic markers, including DNA methylation, are involved in this process. Understanding how DNA methylation is impacted by pregnancy exposures, and related to later health, may both contribute to unravelling the aetiology of complex disease risk in later life and provide a potential early-life biomarker for risk prediction. However, current evidence is limited. There has been a predominance of small, poorly powered studies, failure to consider the effects of genetic variation, and limited replication of previous findings. In addition, previous studies investigating the relationship between DNA methylation and offspring health have been primarily cross-sectional. For these reasons, I investigated the associations between pregnancy exposures (in particular, maternal smoking, nutrition and metabolic health, psychosocial stress, and adverse pregnancy conditions), birth outcomes, and offspring blood DNA methylation of the insulin-like growth factor 2 (IGF2) and H19, hypoxia-inducible factor 3A (HIF3A), leptin (LEP) genes. I also considered how genetic variation impacted on these associations. I then investigated the longitudinal relationship between early life methylation and anthropometry, as well as the association between early life methylation and later childhood measures of weight, adiposity, and cardiovascular health. To do this, the large, population-based longitudinal Barwon Infant Study pre-birth cohort (n=1,074) was used, with clinical and questionnaire measures from 28 weeks pregnancy, birth, 12 months post-birth and 4 years post-birth time points. DNA methylation of candidate regions was measured using the Sequenom EpiTyper mass-spectrometry platform in cord (birth) and peripheral (12-month) blood. Infant genetic variation in and near the candidate genes was considered. Infant adiposity was assessed as sum of triceps and subscapular skinfold thicknesses in infancy, and with DEXA scanning at 4 years of age. We found evidence that exposure to maternal psychosocial stress, gestational diabetes, and pre-eclampsia was associated with differences in offspring methylation at the candidate regions, as was infant sex. Genetic variation showed strong effects on DNA methylation levels, with some evidence for the associations of pre-eclampsia and infant adiposity with LEP methylation differing by infant genotype. Early life methylation of HIF3A and LEP showed modest associations with four-year blood pressure and BMI, respectively. While these associations persisted with adjustment for potential confounding factors, they explained relatively little variance in the four-year phenotypes compared to traditional predictors, such as weight. These findings suggest that offspring DNA methylation of these candidate genes involved in regulation of growth and metabolism are sensitive to several environmental exposures and genetic factors. While there is modest evidence for methylation in infant blood associating with later phenotypes, methylation of these genes appears unlikely to have useful predictive utility in isolation. This study is the first to perform early life longitudinal analysis to investigate the association between anthropometry and methylation in infancy. It is also the first to report evidence of earlier methylation associating with later cardiovascular phenotypes. However, as gene expression data was not available, the functional consequences of the altered methylation observed in blood is unclear. Further work is required to replicate these findings in independent cohorts, to determine the nature of expression of these genes in blood, and to investigate if the relationship between early life methylation and later health persists into adulthood

    Comparison of the stability of Glycoprotein Acetyls and high sensitivity C-reactive protein as markers of chronic inflammation

    No full text
    It has been suggested that glycoprotein acetyls (GlycA) better reflects chronic inflammation than high sensitivity C-reactive protein (hsCRP), but paediatric/life-course data are sparse. Using data from the Avon Longitudinal Study of Parents and Children (ALSPAC) and UK Biobank, we compared short- (over weeks) and long-term (over years) correlations of GlycA and hsCRP, cross-sectional correlations between GlycA and hsCRP, and associations of pro-inflammatory risk factors with GlycA and hsCRP across the life-course. GlycA showed high short-term (weeks) stability at 15 years (r = 0.75; 95% CI = 0.56, 0.94), 18 years (r = 0.74; 0.64, 0.85), 24 years (r = 0.74; 0.51, 0.98) and 48 years (r = 0.82 0.76, 0.86) and this was comparable to the short-term stability of hsCRP at 24 years. GlycA stability was moderate over the long-term, for example between 15 and 18 years r = 0.52; 0.47, 0.56 and between 15 and 24 years r = 0.37; 0.31, 0.44. These were larger than equivalent correlations of hsCRP. GlycA and concurrently measured hsCRP were moderately correlated at all ages, for example at 15 years (r = 0.44; 0.40, 0.48) and at 18 years (r = 0.55; 0.51, 0.59). We found similar associations of known proinflammatory factors and inflammatory diseases with GlycA and hsCRP. For example, BMI was positively associated with GlycA (mean difference in GlycA per standard deviation change in BMI = 0.08; 95% CI = 0.07, 0.10) and hsCRP (0.10; 0.08, 0.11). This study showed that GlycA has greater long-term stability than hsCRP, however associations of proinflammatory factors with GlycA and hsCRP were broadly similar
    corecore