13 research outputs found
Electronic Structure of Transition-Metal Dicyanamides Me[N(CN)] (Me = Mn, Fe, Co, Ni, Cu)
The electronic structure of Me[N(CN)] (Me=Mn, Fe, Co, Ni, Cu)
molecular magnets has been investigated using x-ray emission spectroscopy (XES)
and x-ray photoelectron spectroscopy (XPS) as well as theoretical
density-functional-based methods. Both theory and experiments show that the top
of the valence band is dominated by Me 3d bands, while a strong hybridization
between C 2p and N 2p states determines the valence band electronic structure
away from the top. The 2p contributions from non-equivalent nitrogen sites have
been identified using resonant inelastic x-ray scattering spectroscopy with the
excitation energy tuned near the N 1s threshold. The binding energy of the Me
3d bands and the hybridization between N 2p and Me 3d states both increase in
going across the row from Me = Mn to Me = Cu. Localization of the Cu 3d states
also leads to weak screening of Cu 2p and 3s states, which accounts for shifts
in the core 2p and 3s spectra of the transition metal atoms. Calculations
indicate that the ground-state magnetic ordering, which varies across the
series is largely dependent on the occupation of the metal 3d shell and that
structural differences in the superexchange pathways for different compounds
play a secondary role.Comment: 20 pages, 11 figures, 2 table
One pot preparation of NiO/ZrO2 sulfated catalysts and its evaluation for the isobutene oligomerization
The synthesis of NiO/ZrO2 sulfated catalysts prepared by the one pot method (sol–gel) is reported. Specific surface areas comprised between 52 and 108 m2/g were obtained. XRD patterns showed the presence of monoclinic and tetragonal zirconia phases. FTIR-pyridine absorption spectra show the presence of Lewis and Bro¨nsted sites in sulfated zirconia but only Lewis sites in nickel zirconia sulfated catalysts. A good correlation between the amount of adsorbed pyridine and the catalytic activity for the isopropanol dehydration was observed. However, an opposite effect was
observed for the isobutene oligomerization, where the catalysts with the lower acidity showed the higher activity. The role of Ni+2 diminishing the deactivation rate forming p-allylic bonds with the olefins is discussed
Rationale, design, and baseline characteristics in Evaluation of LIXisenatide in Acute Coronary Syndrome, a long-term cardiovascular end point trial of lixisenatide versus placebo
Background: Cardiovascular (CV) disease is the leading cause of morbidity and mortality in patients with type 2 diabetes mellitus (T2DM). Furthermore, patients with T2DM and acute coronary syndrome (ACS) have a particularly high risk of CV events. The glucagonlike peptide 1 receptor agonist, lixisenatide, improves glycemia, but its effects on CV events have not been thoroughly evaluated. Methods: ELIXA (www.clinicaltrials.gov no. NCT01147250) is a randomized, double-blind, placebo-controlled, parallelgroup, multicenter study of lixisenatide in patients with T2DM and a recent ACS event. The primary aim is to evaluate the effects of lixisenatide on CV morbidity and mortality in a population at high CV risk. The primary efficacy end point is a composite of time to CV death, nonfatal myocardial infarction, nonfatal stroke, or hospitalization for unstable angina. Data are systematically collected for safety outcomes, including hypoglycemia, pancreatitis, and malignancy. Results: Enrollment began in July 2010 and ended in August 2013; 6,068 patients from 49 countries were randomized. Of these, 69% are men and 75% are white; at baseline, the mean ± SD age was 60.3 ± 9.7 years, body mass index was 30.2 ± 5.7 kg/m2, and duration of T2DM was 9.3±8.2 years. The qualifying ACS wasamyocardial infarctionin83% and unstableangina in 17%. The study will continue until the positive adjudication of the protocol-specified number of primary CV events. Conclusion: ELIXA will be the first trial to report the safety and efficacy of a glucagon-like peptide 1 receptor agonist in people with T2DM and high CV event risk. © 2015 Elsevier Inc. All rights reserved