3 research outputs found

    Kansas City Cardiomyopathy Questionnaire Utility in Prediction of 30-Day Readmission Rate in Patients with Chronic Heart Failure

    Get PDF
    Background. Heart failure (HF) is one of the most common diagnoses associated with hospital readmission. We designed this prospective study to evaluate whether Kansas City Cardiomyopathy Questionnaire (KCCQ) score is associated with 30-day readmission in patients hospitalized with decompensated HF. Methods and Results. We enrolled 240 patients who met the study criteria. Forty-eight (20%) patients were readmitted for decompensated HF within thirty days of hospital discharge, and 192 (80%) patients were not readmitted. Compared to readmitted patients, nonreadmitted patients had a higher average KCCQ score (40.8 versus 32.6, P = 0.019) before discharge. Multivariate analyses showed that a high KCCQ score was associated with low HF readmission rate (adjusted OR = 0.566, P = 0.022). The c-statistic for the base model (age + gender) was 0.617. The combination of home medication and lab tests on the base model resulted in an integrated discrimination improvement (IDI) increase of 3.9%. On that basis, the KCQQ further increased IDI of 2.7%. Conclusions. The KCCQ score determined before hospital discharge was significantly associated with 30-day readmission rate in patients with HF, which may provide a clinically useful measure and could significantly improve readmission prediction reliability when combined with other clinical components

    Targeted Serum Metabolite Profiling Identifies Metabolic Signatures in Patients with Alzheimer's Disease, Normal Pressure Hydrocephalus and Brain Tumor

    No full text
    Progression to AD is preceded by elevated levels of 2,4-dihydroxybutanoic acid (2,4-DHB), implicating hypoxia in early pathogenesis. Since hypoxia may play a role in multiple CNS disorders, we investigated serummetabolite profiles across three disorders, AD, Normal Pressure Hydrocephalus (NPH) and brain tumors (BT). Blood samples were collected from27 NPH and 20 BT patients. The profiles of 21metabolites were examined. Additionally, data from 37 AD patients and 46 controls from a previous study were analyzed together with the newly acquired data. No differences in 2,4-DHB were found across AD, NPH and BT samples. In the BT group, the fatty acids were increased as compared to HC and NPH groups, while the ketone body 3-hydroxybutyrate was increased as compared to AD. Glutamic acid was increased in AD as compared to the HC group. In the AD group, 3-hydroxybutyrate tended to be decreased with respect to all other groups (mean values −30% or more), but the differences were not statistically significant. Serine was increased in NPH as compared to BT. In conclusion, AD, NPH and BT have different metabolic profiles. This preliminary study may help in identifying the blood based markers that are specific to these three CNS diseases.Funding Agency:Karen L. Wrenn Estate under the Florida Hospital Foundation</p

    Targeted Serum Metabolite Profiling Identifies Metabolic Signatures in Patients with Alzheimer's Disease, Normal Pressure Hydrocephalus and Brain Tumor

    No full text
    Progression to AD is preceded by elevated levels of 2,4-dihydroxybutanoic acid (2,4-DHB), implicating hypoxia in early pathogenesis. Since hypoxia may play a role in multiple CNS disorders, we investigated serum metabolite profiles across three disorders, AD, Normal Pressure Hydrocephalus (NPH) and brain tumors (BT). Blood samples were collected from 27 NPH and 20 BT patients. The profiles of 21 metabolites were examined. Additionally, data from 37 AD patients and 46 controls from a previous study were analyzed together with the newly acquired data. No differences in 2,4-DHB were found across AD, NPH and BT samples. In the BT group, the fatty acids were increased as compared to HC and NPH groups, while the ketone body 3-hydroxybutyrate was increased as compared to AD. Glutamic acid was increased in AD as compared to the HC group. In the AD group, 3-hydroxybutyrate tended to be decreased with respect to all other groups (mean values −30% or more), but the differences were not statistically significant. Serine was increased in NPH as compared to BT. In conclusion, AD, NPH and BT have different metabolic profiles. This preliminary study may help in identifying the blood based markers that are specific to these three CNS diseases
    corecore