50 research outputs found

    Chronic Kidney Allograft Disease: New Concepts and Opportunities

    Get PDF
    Chronic kidney disease (CKD) is increasing in most countries and kidney transplantation is the best option for those patients requiring renal replacement therapy. Therefore, there is a significant number of patients living with a functioning kidney allograft. However, progressive kidney allograft functional deterioration remains unchanged despite of major advances in the field. After the first post-transplant year, it has been estimated that this chronic allograft damage may cause a 5% graft loss per year. Most studies focused on mechanisms of kidney graft damage, especially on ischemia-reperfusion injury, alloimmunity, nephrotoxicity, infection and disease recurrence. Thus, therapeutic interventions focus on those modifiable factors associated with chronic kidney allograft disease (CKaD). There are strategies to reduce ischemia-reperfusion injury, to improve the immunologic risk stratification and monitoring, to reduce calcineurin-inhibitor exposure and to identify recurrence of primary renal disease early. On the other hand, control of risk factors for chronic disease progression are particularly relevant as kidney transplantation is inherently associated with renal mass reduction. However, despite progress in pathophysiology and interventions, clinical advances in terms of long-term kidney allograft survival have been subtle. New approaches are needed and probably a holistic view can help. Chronic kidney allograft deterioration is probably the consequence of damage from various etiologies but can be attenuated by kidney repair mechanisms. Thus, besides immunological and other mechanisms of damage, the intrinsic repair kidney graft capacity should be considered to generate new hypothesis and potential therapeutic targets. In this review, the critical risk factors that define CKaD will be discussed but also how the renal mechanisms of regeneration could contribute to a change chronic kidney allograft disease paradigm

    siRNA-silencing of CD40 attenuates unilateral ureteral obstruction-induced kidney injury in mice

    Get PDF
    Ureteral obstruction; CD40; MiceObstrucción ureteral; CD40; RatonesObstrucció ureteral; CD40; RatolinsBACKGROUND: The costimulatory CD40-CD40L pathway plays a role in kidney inflammation. We have previously reported that renal CD40 upregulation precedes cellular interstitial infiltrate and fibrosis in the unilateral ureteral obstruction (UUO) model. Here we sought to evaluate whether the administration of siRNA-CD40 has a therapeutic effect in a reversible unilateral ureteral obstruction (D-UUO) mice model. METHODS: Eight week-old C57BL6J male mice were divided into four groups: Vehicle (Phosphate-buffered saline) (n = 8); siRNA SC (non-specific siRNA) (n = 6); siRNA-CD40 (n = 8) and WT (wild type) (n = 6) mice. UUO was performed with a microvascular clamp. At day 3 after surgery, the ureteral clamp was removed and nephrectomy of the contralateral kidney was performed. Immediately, PBS, siRNA SC (50μg) or siRNA-CD40 (50μg) was administrated via the tail vein. Mice were killed 48h hours after the siRNA or saline administration. Wild type (WT) mice were used as controls. Blood samples were collected for measuring creatinine and blood urea nitrogen (BUN). Histology and kidney mRNA expression were performed. RESULTS: The administration of siRNA-CD40 reduced significantly the severity of acute renal failure associated with UUO. Pathologic analysis showed reduction of tubular dilation, interstitial fibrosis, F4/80 macrophage and CD3 (T cell) infiltration in animals treated with siRNA-CD40. Furthermore, kidney mRNA gene expression analysis showed significantly lower levels of macrophage markers (F4/80 and Mannose receptor), fibrosis matrix proteins (Fibronectin, MMP-9, Collagen IV and α-SMA), pro-inflammatory cytokines (iNOS and MCP-1) and the pro-fibrotic molecule TGF-β1 in siRNA-CD40. CONCLUSIONS: The administration of siRNA-CD40 therapy reduces the severity of the acute kidney injury induced by obstructive uropathy and promotes kidney repair. This strategy seems suitable to be tested in humans.Funded by Instituto de Salud Carlos III through the project RD16/0009/ 0003 (Co-funded by European Regional Development Fund. ERDF, a way to build Europe

    Exploring macrophage cell therapy on diabetic kidney disease

    Get PDF
    Alternatively activated macrophages (M2) have regenerative properties and shown promise as cell therapy in chronic kidney disease. However, M2 plasticity is one of the major hurdles to overcome. Our previous studies showed that genetically modified macrophages stabilized by neutrophil gelatinase‐associated lipocalin (NGAL) were able to preserve their M2 phenotype. Nowadays, little is known about M2 macrophage effects in diabetic kidney disease (DKD). The aim of the study was to investigate the therapeutic effect of both bone marrow‐derived M2 (BM‐фM2) and ф‐NGAL macrophages in the db/db mice. Seventeen‐week‐old mice with established DKD were divided into five treatment groups with their controls: D+BM‐фM2; D+ф‐BM; D+ф‐NGAL; D+ф‐RAW; D+SHAM and non‐diabetic (ND) (db/‐ and C57bl/6J) animals. We infused 1 × 106 macrophages twice, at baseline and 2 weeks thereafter. BM‐фM2 did not show any therapeutic effect whereas ф‐ NGAL significantly reduced albuminuria and renal fibrosis. The ф‐NGAL therapy increased the anti‐inflammatory IL‐10 and reduced some pro‐inflammatory cytoki nes, reduced the proportion of M1 glomerular macrophages and podocyte loss and was associated with a significant decrease of renal TGF‐β1. Overall, our study provides evidence that ф‐NGAL macrophage cell therapy has a therapeutic effect on DKD probably by modulation of the renal inflammatory response caused by the diabetic milieu

    A Free App for Diagnosing Burnout (BurnOut App): Development Study

    Get PDF
    Background: Health specialists take care of us, but who takes care of them? These professionals are the most vulnerable to the increasingly common syndrome known as burnout. Burnout is a syndrome conceptualized as a result of chronic workplace stress that has not been successfully managed. Objective: This study aims to develop a useful app providing burnout self-diagnosis and tracking of burnout through a simple, intuitive, and user-friendly interface. Methods: We present the BurnOut app, an Android app developed using the Xamarin and MVVMCross platforms, which allows users to detect critical cases of psychological discomfort by implementing the Goldberg and Copenhagen Burnout Inventory tests. Results: The BurnOut app is robust, user-friendly, and efficient. The good performance of the app was demonstrated by comparing its features with those of similar apps in the literature. Conclusions: The BurnOut app is very useful for health specialists or users, in general, to detect burnout early and track its evolution.This work was supported by project PID2020-113614RB-C22, funded by MCIN/AEI/10.13039/501100011033. JV is a Serra Húnter fello

    Pre-transplant donor-specific T-cell alloreactivity is strongly associated with early acute cellular rejection in kidney transplant recipients not receiving T-cell depleting induction therapy

    Get PDF
    Preformed T-cell immune-sensitization should most likely impact allograft outcome during the initial period after kidney transplantation, since donor-specific memory T-cells may rap- idly recognize alloantigens and activate the effector immune response, which leads to allo- graft rejection. However, the precise time-frame in which acute rejection is fundamentally triggered by preformed donor-specific memory T cells rather than by denovo activated na ï ve T cells is still to be established. Here, preformed donor-specific alloreactive T-cell re- sponses were evaluated using the IFN- γ ELISPOT assay in a large consecutive cohort of kidney transplant patients (n = 90), to assess the main clinical variables associated with cel- lular sensitization and its predominant time-frame impact on allograft outcome, and was fur- ther validated in an independent new set of kidney transplant recipients (n = 67). We found that most highly T-cell sensitized patients were elderly patients with particularly poor HLA class-I matching, without any clinically recognizable sensitizing events. While one-year inci- dence of all types of biopsy-proven acute rejection did not differ between T-cell alloreactive and non-alloreactive patients, Receiver Operating Characteristic curve analysis indicated the first two months after transplantation as the highest risk time period for acute cellular re- jection associated with baseline T-cell sensitization. This effect was particularly evident in young and highly alloreactive individuals that did not receive T-cell depletion immunosup- pression. Multivariate analysis confirmed preformed T-cell sensitization as an independent predictor of early acute cellular rejection. In summary, monitoring anti-donor T-cell sensiti- zation before transplantation may help to identify patients at increased risk of acute cellular rejection, particularly in the early phases after kidney transplantation, and thus guide decision-making regarding the use of induction therapy

    Molecular Mechanisms of Kidney Injury and Repair

    Get PDF
    Chronic kidney disease (CKD) will become the fifth global cause of death by 2040, thus emphasizing the need to better understand the molecular mechanisms of damage and regeneration in the kidney. CKD predisposes to acute kidney injury (AKI) which, in turn, promotes CKD progression. This implies that CKD or the AKI-to-CKD transition are associated with dysfunctional kidney repair mechanisms. Current therapeutic options slow CKD progression but fail to treat or accelerate recovery from AKI and are unable to promote kidney regeneration. Unraveling the cellular and molecular mechanisms involved in kidney injury and repair, including the failure of this process, may provide novel biomarkers and therapeutic tools. We now review the contribution of different molecular and cellular events to the AKI-to-CKD transition, focusing on the role of macrophages in kidney injury, the different forms of regulated cell death and necroinflammation, cellular senescence and the senescence-associated secretory phenotype (SAPS), polyploidization, and podocyte injury and activation of parietal epithelial cells. Next, we discuss key contributors to repair of kidney injury and opportunities for their therapeutic manipulation, with a focus on resident renal progenitor cells, stem cells and their reparative secretome, certain macrophage subphenotypes within the M2 phenotype and senescent cell clearance

    Influence of the circadian timing system on Tacrolimus pharmacokinetics and pharmacodynamics after kidney transplantation

    Get PDF
    Introduction: Tacrolimus is the backbone immunosuppressant after solid organ transplantation. Tacrolimus has a narrow therapeutic window with large intra- and inter-patient pharmacokinetic variability leading to frequent over- and under-immunosuppression. While routine therapeutic drug monitoring (TDM) remains the standard of care, tacrolimus pharmacokinetic variability may be influenced by circadian rhythms. Our aim was to analyze tacrolimus pharmacokinetic/pharmacodynamic profiles on circadian rhythms comparing morning and night doses of a twice-daily tacrolimus formulation. Methods: This is a post-hoc analysis from a clinical trial to study the area under curve (AUC) and the area under effect (AUE) profiles of calcineurin inhibition after tacrolimus administration in twenty-five renal transplant patients. Over a period of 24 h, an intensive sampling (0, 0.5, 1, 1.5, 2, 3, 4, 6, 8, 12, 12.5, 13, 13.5, 14, 15, 20, and 24 h) was carried out. Whole blood and intracellular tacrolimus concentrations and calcineurin activity were measured by UHPLC-MS/MS. Results: Whole blood and intracellular AUC12-24 h and Cmax achieved after tacrolimus night dose was significantly lower than after morning dose administration (AUC0-12 h) (p < 0.001 for both compartments). AUE0-12 h and AUE12-24 h were not statistically different after morning and night doses. Total tacrolimus daily exposure (AUC0-24 h), in whole blood and intracellular compartments, was over-estimated when assessed by doubling the morning AUC0-12 h data. Conclusion: The lower whole blood and intracellular tacrolimus concentrations after night dose might be influenced by a distinct circadian clock. This significantly lower tacrolimus exposure after night dose was not translated into a significant reduction of the pharmacodynamic effect. Our study may provide conceptual bases for better understanding the TDM of twice-daily tacrolimus formulation

    Effects of body weight variation in obese kidney recipients: a retrospective cohort study

    Get PDF
    Background. Obese kidney allograft recipients have worse results in kidney transplantation (KT). However, there is lack of information regarding the effect of body mass index (BMI) variation after KT. The objective of the study was to evaluate the effects of body weight changes in obese kidney transplant recipients. Methods. In this study we used data from the Catalan Renal Registry that included KT recipients from 1990 to 2011 (n ¼ 5607). The annual change in post-transplantation BMI was calculated. The main outcome variables were delayed graft function (DGF), estimated glomerular filtration rate (eGFR) and patient and graft survival. Results. Obesity was observed in 609 patients (10.9%) at the time of transplantation. The incidence of DGF was significantly higher in obese patients (40.4% versus 28.3%; P < 0.001). Baseline obesity was significantly associated with worse short- and long-term graft survival (P < 0.05) and worse graft function during the follow-up (P < 0.005). BMI variations in obese patients did not improve eGFR or graft or patient survival. Conclusions. Our conclusion is that in obese patients, decreasing body weight after KT does not improve either short-term graft outcomes or long-term renal function

    Acute Kidney Injury Following Chimeric Antigen Receptor T-Cell Therapy for B-Cell Lymphoma in a Kidney Transplant Recipient

    Get PDF
    Anti-CD19 chimeric antigen receptor (CAR) T-cell therapy is a newer and effective therapeutic option approved for patients with relapsed/refractory acute lymphoblastic leukemia and diffuse large B-cell lymphoma. Acute kidney injury is a complication of CAR T-cell therapy that can result in kidney failure. In most cases, it is thought to be related to hemodynamic changes due to cytokine release syndrome. Kidney biopsy in this clinical scenario is usually not performed. We report on a kidney transplant recipient in his 40s who developed a posttransplant lymphoproliferative disorder of B-cell origin refractory to conventional treatments and received anti-CD19 CAR T-cell therapy as compassionate treatment. Beginning on day 12 after CAR T-cell infusion, in the absence of clinical symptoms, a progressive decline in estimated glomerular filtration rate of the kidney graft occurred. A subsequent allograft biopsy showed mild tubulointerstitial lymphocyte infiltrates, falling into a Banff borderline-changes category and resembling an acute immunoallergic tubulointerstitial nephritis. Neither CAR T cells nor lymphomatous B cells were detected within the graft cellular infiltrates, suggesting an indirect mechanism of kidney injury. Although kidney graft function partially recovered after steroid therapy, the posttransplant lymphoproliferative disorder progressed and the patient died 7 months later

    The effect of intracellular tacrolimus exposure on calcineurin inhibition in immediate- and extended-release tacrolimus formulations

    Full text link
    Despite intensive monitoring of whole blood tacrolimus concentrations, acute rejection after kidney transplantation occurs during tacrolimus therapy. Intracellular tacrolimus concentrations could better reflect exposure at the site of action and its pharmacodynamics (PD). Intracellular pharmacokinetic (PK) profile following different tacrolimus formulations (immediate-release (TAC-IR) and extended-release (TAC-LCP)) remains unclear. Therefore, the aim was to study intracellular tacrolimus PK of TAC-IR and TAC-LCP and its correlation with whole blood (WhB) PK and PD. A post-hoc analysis of a prospective, open-label, crossover investigator-driven clinical trial (NCT02961608) was performed. Intracellular and WhB tacrolimus 24 h time-concentration curves were measured in 23 stable kidney transplant recipients. PD analysis was evaluated measuring calcineurin activity (CNA) and simultaneous intracellular PK/PD modelling analysis was conducted. Higher dose-adjusted pre-dose intracellular concentrations (C0 and C24) and total exposure (AUC0-24) values were found for TAC-LCP than TAC-IR. Lower intracellular peak concentration (Cmax) was found after TAC-LCP. Correlations between C0, C24 and AUC0-24 were observed within both formulations. Intracellular kinetics seems to be limited by WhB disposition, in turn, limited by tacrolimus release/absorption processes from both formulations. The faster intracellular elimination after TAC-IR was translated into a more rapid recovery of CNA. An Emax model relating % inhibition and intracellular concentrations, including both formulations, showed an IC50, a concentration to achieve 50% CNA inhibition, of 43.9 pg/million cells
    corecore