111 research outputs found

    Foreword

    Get PDF
    Magnetometers and inertial sensors (accelerometers and gyroscopes) are widely used to estimate 3D orientation. For the orientation estimates to be accurate, the sensor axes need to be aligned and the magnetometer needs to be calibrated for sensor errors and for the presence of magnetic disturbances. In this work we use a grey-box system identification approach to compute maximum likelihood estimates of the calibration parameters. An experiment where the magnetometer data is highly disturbed shows that the algorithm works well on real data, providing good calibration results and improved heading estimates. We also provide an identifiability analysis to understand how much rotation is needed to be able to solve the calibration problem.MC ImpulseCADIC

    Magnetometer calibration using inertial sensors

    Full text link
    In this work we present a practical algorithm for calibrating a magnetometer for the presence of magnetic disturbances and for magnetometer sensor errors. To allow for combining the magnetometer measurements with inertial measurements for orientation estimation, the algorithm also corrects for misalignment between the magnetometer and the inertial sensor axes. The calibration algorithm is formulated as the solution to a maximum likelihood problem and the computations are performed offline. The algorithm is shown to give good results using data from two different commercially available sensor units. Using the calibrated magnetometer measurements in combination with the inertial sensors to determine the sensor's orientation is shown to lead to significantly improved heading estimates.Comment: 19 pages, 8 figure

    Nonlinear state space smoothing using the conditional particle filter

    Full text link
    To estimate the smoothing distribution in a nonlinear state space model, we apply the conditional particle filter with ancestor sampling. This gives an iterative algorithm in a Markov chain Monte Carlo fashion, with asymptotic convergence results. The computational complexity is analyzed, and our proposed algorithm is successfully applied to the challenging problem of sensor fusion between ultra-wideband and accelerometer/gyroscope measurements for indoor positioning. It appears to be a competitive alternative to existing nonlinear smoothing algorithms, in particular the forward filtering-backward simulation smoother.Comment: Accepted for the 17th IFAC Symposium on System Identification (SYSID), Beijing, China, October 201

    Newton-based maximum likelihood estimation in nonlinear state space models

    Full text link
    Maximum likelihood (ML) estimation using Newton's method in nonlinear state space models (SSMs) is a challenging problem due to the analytical intractability of the log-likelihood and its gradient and Hessian. We estimate the gradient and Hessian using Fisher's identity in combination with a smoothing algorithm. We explore two approximations of the log-likelihood and of the solution of the smoothing problem. The first is a linearization approximation which is computationally cheap, but the accuracy typically varies between models. The second is a sampling approximation which is asymptotically valid for any SSM but is more computationally costly. We demonstrate our approach for ML parameter estimation on simulated data from two different SSMs with encouraging results.Comment: 17 pages, 2 figures. Accepted for the 17th IFAC Symposium on System Identification (SYSID), Beijing, China, October 201

    Mapping the magnetic field using a magnetometer array with noisy input Gaussian process regression

    Full text link
    Ferromagnetic materials in indoor environments give rise to disturbances in the ambient magnetic field. Maps of these magnetic disturbances can be used for indoor localisation. A Gaussian process can be used to learn the spatially varying magnitude of the magnetic field using magnetometer measurements and information about the position of the magnetometer. The position of the magnetometer, however, is frequently only approximately known. This negatively affects the quality of the magnetic field map. In this paper, we investigate how an array of magnetometers can be used to improve the quality of the magnetic field map. The position of the array is approximately known, but the relative locations of the magnetometers on the array are known. We include this information in a novel method to make a map of the ambient magnetic field. We study the properties of our method in simulation and show that our method improves the map quality. We also demonstrate the efficacy of our method with experimental data for the mapping of the magnetic field using an array of 30 magnetometers

    Modeling and interpolation of the ambient magnetic field by Gaussian processes

    Full text link
    Anomalies in the ambient magnetic field can be used as features in indoor positioning and navigation. By using Maxwell's equations, we derive and present a Bayesian non-parametric probabilistic modeling approach for interpolation and extrapolation of the magnetic field. We model the magnetic field components jointly by imposing a Gaussian process (GP) prior on the latent scalar potential of the magnetic field. By rewriting the GP model in terms of a Hilbert space representation, we circumvent the computational pitfalls associated with GP modeling and provide a computationally efficient and physically justified modeling tool for the ambient magnetic field. The model allows for sequential updating of the estimate and time-dependent changes in the magnetic field. The model is shown to work well in practice in different applications: we demonstrate mapping of the magnetic field both with an inexpensive Raspberry Pi powered robot and on foot using a standard smartphone.Comment: 17 pages, 12 figures, to appear in IEEE Transactions on Robotic

    Large-scale magnetic field maps using structured kernel interpolation for Gaussian process regression

    Full text link
    We present a mapping algorithm to compute large-scale magnetic field maps in indoor environments with approximate Gaussian process (GP) regression. Mapping the spatial variations in the ambient magnetic field can be used for localization algorithms in indoor areas. To compute such a map, GP regression is a suitable tool because it provides predictions of the magnetic field at new locations along with uncertainty quantification. Because full GP regression has a complexity that grows cubically with the number of data points, approximations for GPs have been extensively studied. In this paper, we build on the structured kernel interpolation (SKI) framework, speeding up inference by exploiting efficient Krylov subspace methods. More specifically, we incorporate SKI with derivatives (D-SKI) into the scalar potential model for magnetic field modeling and compute both predictive mean and covariance with a complexity that is linear in the data points. In our simulations, we show that our method achieves better accuracy than current state-of-the-art methods on magnetic field maps with a growing mapping area. In our large-scale experiments, we construct magnetic field maps from up to 40000 three-dimensional magnetic field measurements in less than two minutes on a standard laptop

    Distributed multi-agent magnetic field norm SLAM with Gaussian processes

    Full text link
    Accurately estimating the positions of multi-agent systems in indoor environments is challenging due to the lack of Global Navigation Satelite System (GNSS) signals. Noisy measurements of position and orientation can cause the integrated position estimate to drift without bound. Previous research has proposed using magnetic field simultaneous localization and mapping (SLAM) to compensate for position drift in a single agent. Here, we propose two novel algorithms that allow multiple agents to apply magnetic field SLAM using their own and other agents measurements. Our first algorithm is a centralized approach that uses all measurements collected by all agents in a single extended Kalman filter. This algorithm simultaneously estimates the agents position and orientation and the magnetic field norm in a central unit that can communicate with all agents at all times. In cases where a central unit is not available, and there are communication drop-outs between agents, our second algorithm is a distributed approach that can be employed. We tested both algorithms by estimating the position of magnetometers carried by three people in an optical motion capture lab with simulated odometry and simulated communication dropouts between agents. We show that both algorithms are able to compensate for drift in a case where single-agent SLAM is not. We also discuss the conditions for the estimate from our distributed algorithm to converge to the estimate from the centralized algorithm, both theoretically and experimentally. Our experiments show that, for a communication drop-out rate of 80 percent, our proposed distributed algorithm, on average, provides a more accurate position estimate than single-agent SLAM. Finally, we demonstrate the drift-compensating abilities of our centralized algorithm on a real-life pedestrian localization problem with multiple agents moving inside a building
    • …
    corecore