68 research outputs found

    Synthesis and Structural Characterization of a Metal Cluster and a Coordination Polymer Based on the [Mn6(μ4-O)2]10+ Unit

    Get PDF
    A new 1-D coordination polymer {[Mn6O2(O2CMe)10(H2O)4]·2.5H2O}∞ (1·2.5H2O)∞ and the cluster [Mn6O2(O2(O2CPh)10 (py)2(MeCN)(H2O)]·2MeCN (2·2MeCN) are reported. Both compounds were synthesized by room temperature reactions of [Mn3(μ3-O)(O2CR)6(L)2(L′)] (R = Me, L = L′ = py, (1·2.5H2O)∞; R = Ph, L = py, L′ = H2O, 2·2MeCN) in the presence of 3-hydroxymethylpyridine (3hmpH) in acetonitrile. The structures of these complexes are based on hexanuclear mixed-valent manganese carboxylate clusters containing the [Mn4IIMn2III(μ4-O)2]10+ structural core. (1·2.5H2O)∞ consists of zigzag chain polymers constructed from [Mn6O2(O2CMe)10(H2O)4] repeating units linked through acetate ligands, whereas 2·2MeCN comprises a discrete Mn6-benzoate cluster

    (2E,4E,6E)-3-Methyl-7-(pyren-1-yl)octa-2,4,6-trienoic acid

    Get PDF
    The title compound, C25H20O2, was synthesized by a Wittig reaction between triphen­yl[1-(pyren-1-yl)eth­yl]phospho­nium bromide and ethyl (2E,4E)-3-methyl-6-oxohexa-2,4-dienoate, in the presence of n-butyl lithium, followed by saponification. It was obtained pure in the all-trans configuration following crystallization from ethyl acetate. The asymmetric unit contains two independent mol­ecules (A and B), which are arranged almost parallel to each other within the crystal structure. The triene chain is not coplanar with the pyrene ring system, forming dihedral angles of 52.8 (1) and 42.2 (1)° for mol­ecules A and B, respectively. Inter­molecular hydrogen bonds between the carboxyl groups of the mol­ecules link them into centrosymmetric pairs, AA and BB, each with the R 2 2(8) graph-set motif

    Tricyclo­[3.3.1.03,7]nonane-3,7-diyl bis­(methane­sulfonate)

    Get PDF
    The crystal structure of the title compound, C11H18O6S2, was determined to investigate the effect of the eclipsed mesyl groups on the bond length of the vicinal quaternary C atoms. The two quaternary C atoms of the noradamantane skeleton and the two O atoms to which they are connected all located essentially in the same plane [maximum deviation 0.01 Å], resulting in an eclipsing conformation of the C—O bonds. The C—C bond of the quaternary C atoms is 1.597 (3) Å is considerably longer than the other C—C bonds of the mol­ecule

    Chemically modified electrodes with MOFs for the determination of inorganic and organic analytes via voltammetric techniques: a critical review

    Get PDF
    Voltammetric analytical techniques combine exceptional sensitivity, low cost, portability and capability for simultaneous determination of multiple analytes. The sensitivity of voltammetric analysis is largely determined by the efficiency of the working electrode. Electrodes modified with metal organic frameworks (MOFs) seem particularly promising for use in the analysis of a series of important inorganic and organic analytes. Nevertheless, research on chemically modified electrodes with MOFs is still in its infancy. In this critical review, we present the current status of research related to MOF-modified electrodes highlighting the respective MOF-modified electrodes which are based on MOFs that show exceptional chemical stability or/and sorption capability towards the targeted analytes. We also provide perspectives for future research aiming at motivating additional scientists to be involved in this exciting field of MOF-based electroanalytical sensors

    Unravelling the mechanism of water sensing by the Mg2+ dihydroxy-terephthalate MOF (AEMOF-1 ‘)

    Get PDF
    In this contribution we build upon our previous work on the MOF [Mg(H(2)dhtp)(H2O)(2)]center dot DMAc (AEMOF-1 center dot DMAc) and its activated dry version AEMOF-1 ‘ which has been shown to exhibit excellent luminescence sensing properties towards water in organic solvents. We demonstrate through combined structural and photophysical studies that the observed changes in the fluorescence properties of AEMOF-1 ‘ upon hydration arise from a structural transformation to the mononuclear complex [Mg(H(2)dhtp)(H2O)(5)]center dot H2O (H(4)dhtp = 2,5-dihydroxyterepthalic acid) (1). In the latter complex, excited state intramolecular proton transfer (ESIPT) is strongly favoured thereby leading to enhanced and red shifted emission in comparison to AEMOF-1 center dot DMAc. Powder X-ray diffraction measurements confirmed that complex 1 is identical to the hydrated form of AEMOF-1 center dot DMAc. As in the case of AEMOF-1 ‘, the dry form of complex 1 (1 ‘) is also an effective sensor for the determination of traces of water in tetrahydrofuran (THF). This work demonstrates that the same chromophore may exhibit very different emission properties when it exists in different chemical environments and that these transformations may be controlled and utilized in water sensing applications

    Layered Metal Sulfides Capture Uranium from Seawater

    No full text
    Uranium is the main source for nuclear energy but also one of the most toxic heavy metals. The current methods for uranium removal from water present limitations, such as narrow pH operating range, limited tolerance to high salt concentrations, or/and high cost. We show here that a layered sulfide ion exchanger K<sub>2</sub>MnSn<sub>2</sub>S<sub>6</sub> (KMS-1) overcomes these limitations and is exceptionally capable in selectively and rapidly sequestering high (ppm) as well as trace (ppb) quantities of UO<sub>2</sub><sup>2+</sup> under a variety of conditions, including seawater. KMS-1 can efficiently absorb the naturally occurring U traces in seawater samples. The results presented here reveal the exceptional potential of sulfide-based ion-exchangers for remediating of uranium-containing wastes and groundwater and for extracting uranium from the sea

    Layered Metal Sulfides Capture Uranium from Seawater

    No full text
    Uranium is the main source for nuclear energy but also one of the most toxic heavy metals. The current methods for uranium removal from water present limitations, such as narrow pH operating range, limited tolerance to high salt concentrations, or/and high cost. We show here that a layered sulfide ion exchanger K<sub>2</sub>MnSn<sub>2</sub>S<sub>6</sub> (KMS-1) overcomes these limitations and is exceptionally capable in selectively and rapidly sequestering high (ppm) as well as trace (ppb) quantities of UO<sub>2</sub><sup>2+</sup> under a variety of conditions, including seawater. KMS-1 can efficiently absorb the naturally occurring U traces in seawater samples. The results presented here reveal the exceptional potential of sulfide-based ion-exchangers for remediating of uranium-containing wastes and groundwater and for extracting uranium from the sea
    corecore