29 research outputs found
Friction at Nanoscale
In many technical fields a contact between two surfaces is very important and often the subject of research. The numerous physical phenomena that occur at the contact between two materials indicate the complexity of the processes that take place at the macro, micro or nanoscale. Therefore, friction, lubrication and wear are the subjects that have been attracting attention for many years, especially as part of tribological investigations. The research has shown that these three components are of fundamental importance for surfaces in contact. The aim of this research is to describe friction, and lubrication as a process to control friction, especially at the atomic level. At the atomic and molecular scale there is a possibility to form very thin film with the property to spontaneously assemble themselves into ordered structures. One of the procedures to make these ultrathin organic films of controlled thickness is to prepare self-assembled monolayers. These monolayers are described as a model system to study boundary lubrication
Characterization of ptc effect in batio(3)-ceramics as a special phase transition - fractal approach
The applications of BaTiO3-ceramics are very important and constantly increasing nowadays. In that sense, we analyzed some phenomena related to inter granular effects. We used experimental data based on Murata powders and processing technology. Our original contribution to Heywang-Jonker-Daniels inter-granular capacity model is based on thermodynamic fractal analysis applied on phase transition in ceramic structures. In this case, PTCR effect has a diffuse first-order phase transition character in a modified Landau theory-fractal approach. Its basic properties are considered. This is an original contribution as a bridge between theoretical aspects of BaTiO3-ceramics and experimental results
CHARACTERIZATION OF PTC EFFECT IN BATIO3-CERAMICS AS A SPECIAL PHASE TRANSITION ā FRACTAL APPROACH
The applications of BaTiO3-ceramics are very important and constantly increasing nowadays. In that sense, we analyzed some phenomena related to inter-granular effects. We used experimental data based on Murata powders and processing technology. Our original contribution to Heywang-Jonker-Daniels inter-granular capacity model is based on thermodynamic fractal analysis applied on phase transition in ceramic structures. In this case, PTCR effect has a diffuse first-order phase transition character in a modified Landau theory-fractal approach. Its basic properties are considered. This is an original contribution as a bridge between theoretical aspects of BaTiO3-ceramics and experimental results
Butler-Volmer current equation and fractal nature correction in electrochemical energy
The Global Energy Crisis necessitated improving research into new, renewable and alternative energy sources. Due to that, our focus is on the area of some phenomena and applications where different synthetic methods and micro-structure property optimization achieved significant improvement in the electro physical properties of output materials and components. This is especially important for higher energy efficiency and electricity production (batteries and battery systems, fuel cells, and hydrogen energy).The improvement of energy storage tank capacity is one of the most important development issues in the energy sphere too. It is because of this very promising research and application area that we are expanding the knowledge on these phenomena through fractal nature analysis. So, the results obtained in the field of electrochemical energy sources, especially in electrolyte development, are taken into account the analysis of fractal nature optimization. Based on the research field of fractal material science, particularly electronic materials, we conducted research in micro-structure fractal influence in the area of electrochemistry. We investigated the consolidation parameters of Fe2O3 redox processes. The influence of activation energy, fundamental thermodynamic parameters, and also the fractal correction of electrode surface area through complex fractal dimension with recognized grains and pores, and the Brownian motion of particles is introduced. Finally, the electrochemical Butler-Volmer equation fractalization is obtained. These results practically open new frontiers in electrochemical energy processes performed through the Arrhenius equation within electrolyte bulk and electrode relations and more complete and precise energy generation
Entropy and fractal nature
Existing, the biunivocal correspondents between the fractal nature and the nature discovered by fractals is the source and meeting point from those two aspects which are similar to the thermodynamically philosophical point of view. Sometimes we can begin from the end. We are substantial part of such fractals space nature. The mathematics fractal structures world have been inspired from nature and Euclidian geometry imagined shapes, and now it is coming back to nature serving it. All our analysis are based on several experimental results. The substance of the question regarding entropy and fractals could be analyzed on different ceramics and materials in general. We have reported the results based on consolidation BaTiO3- ceramics by the standard sintering technology, performed with BaTiO3 and different additives (MnCO3, CeO2, Bi2O3, Fe2O3, CaZrO3, Nb2O5, Er2O3, Yt(2)O(3), Ho2O3). Thermodynamic principles are very important. Beside the energy and temperature, the entropy as a measure between the order and disorder (chaos) is very important parameter. In this paper, we establish the relation between the entropy and fractal that opens new frontiers with the goal to understand and establish the order-disorder relation
Butler-volmer current equation and fractal nature correction in electrochemical energy
The Global Energy Crisis necessitated improving research into new, renewable and alternative energy sources. Due to that, our focus is on the area of some phenomena and applications where different synthetic methods and microstructure property optimization achieved significant improvement in the electro physical properties of output materials and components. This is especially important for higher energy efficiency and electricity production (batteries and battery systems, fuel cells, and hydrogen energy). The improvement of energy storage tank capacity is one of the most important development issues in the energy sphere too. It is because of this very promising research and application area that we are expanding the knowledge on these phenomena through fractal nature analysis. So, the results obtained in the field of electrochemical energy sources, especially in electrolyte development, are taken into account the analysis of fractal nature optimization. Based on the research field of fractal material science, particularly electronic materials, we conducted research in micro-structure fractal influence in the area of electrochemistry. We investigated the consolidation parameters of Fe2O3 redox processes. The influence of activation energy, fundamental thermodynamic parameters, and also the fractal correction of electrode surface area through complex fractal dimension with recognized grains and pores, and the Brownian motion of particles is introduced. Finally, the electrochemical Butler-Volmer equation fractalization is obtained. These results practically open new frontiers in electrochemical energy processes performed through the Arrhenius equation within electrolyte bulk and electrode relations and more complete and precise energy generation
Entropy and fractal nature
Existing, the biunivocal correspondents between the fractal nature and the nature discovered by fractals is the source and meeting point from those two aspects which are similar to the thermodynamically philosophical point of view. Sometimes we can begin from the end. We are substantial part of such fractals space nature. The mathematics fractal structures world have been inspired from nature and Euclidian geometry imagined shapes, and now it is coming back to nature serving it. All our analysis are based on several experimental results. The substance of the question regarding entropy and fractals could be analyzed on different ceramics and materials in general. We have reported the results based on consolidation BaTiO3- ceramics by the standard sintering technology, performed with BaTiO3 and different additives (MnCO3, CeO2, Bi2O3, Fe2O3, CaZrO3, Nb2O5, Er2O3, Yt2O3, Ho2O3). Thermodynamic principles are very important. Beside the energy and temperature, the entropy as a measure between the order and disorder (chaos) is very important parameter. In this paper, we establish the relation between the entropy and fractal that opens new frontiers with the goal to understand and establish the order-disorder relation