34 research outputs found
Neuroinflammation, Mast Cells, and Glia: Dangerous Liaisons
The perspective of neuroinflammation as an epiphenomenon following neuron damage is being replaced by the awareness of glia and their importance in neural functions and disorders. Systemic inflammation generates signals that communicate with the brain and leads to changes in metabolism and behavior, with microglia assuming a pro-inflammatory phenotype. Identification of potential peripheral-to-central cellular links is thus a critical step in designing effective therapeutics. Mast cells may fulfill such a role. These resident immune cells are found close to and within peripheral nerves and in brain parenchyma/meninges, where they exercise a key role in orchestrating the inflammatory process from initiation through chronic activation. Mast cells and glia engage in crosstalk that contributes to accelerate disease progression; such interactions become exaggerated with aging and increased cell sensitivity to stress. Emerging evidence for oligodendrocytes, independent of myelin and support of axonal integrity, points to their having strong immune functions, innate immune receptor expression, and production/response to chemokines and cytokines that modulate immune responses in the central nervous system while engaging in crosstalk with microglia and astrocytes. In this review, we summarize the findings related to our understanding of the biology and cellular signaling mechanisms of neuroinflammation, with emphasis on mast cell-glia interactions
Regulation of inflammation in Japanese encephalitis
Uncontrolled inflammatory response of the central nervous system is a hallmark of severe Japanese encephalitis (JE). Although inflammation is necessary to mount an efficient immune response against virus infections, exacerbated inflammatory response is often detrimental. In this context, cells of the monocytic lineage appear to be important forces driving JE pathogenesis
JPN Guidelines for the management of acute pancreatitis: epidemiology, etiology, natural history, and outcome predictors in acute pancreatitis
Acute pancreatitis is a common disease with an annual incidence of between 5 and 80 people per 100 000 of the population. The two major etiological factors responsible for acute pancreatitis are alcohol and cholelithiasis (gallstones). The proportion of patients with pancreatitis caused by alcohol or gallstones varies markedly in different countries and regions. The incidence of acute alcoholic pancreatitis is considered to be associated with high alcohol consumption. Although the incidence of alcoholic pancreatitis is much higher in men than in women, there is no difference in sexes in the risk involved after adjusting for alcohol intake. Other risk factors include endoscopic retrograde cholangiopancreatography, surgery, therapeutic drugs, HIV infection, hyperlipidemia, and biliary tract anomalies. Idiopathic acute pancreatitis is defined as acute pancreatitis in which the etiological factor cannot be specified. However, several studies have suggested that this entity includes cases caused by other specific disorders such as microlithiasis. Acute pancreatitis is a potentially fatal disease with an overall mortality of 2.1%–7.8%. The outcome of acute pancreatitis is determined by two factors that reflect the severity of the illness: organ failure and pancreatic necrosis. About half of the deaths in patients with acute pancreatitis occur within the first 1–2 weeks and are mainly attributable to multiple organ dysfunction syndrome (MODS). Depending on patient selection, necrotizing pancreatitis develops in approximately 10%–20% of patients and the mortality is high, ranging from 14% to 25% of these patients. Infected pancreatic necrosis develops in 30%–40% of patients with necrotizing pancreatitis and the incidence of MODS in such patients is high. The recurrence rate of acute pancreatitis is relatively high: almost half the patients with acute alcoholic pancreatitis experience a recurrence. When the gallstones are not treated, the risk of recurrence in gallstone pancreatitis ranges from 32% to 61%. After recovering from acute pancreatitis, about one-third to one-half of acute pancreatitis patients develop functional disorders, such as diabetes mellitus and fatty stool; the incidence of chronic pancreatitis after acute pancreatitis ranges from 3% to 13%. Nevertheless, many reports have shown that most patients who recover from acute pancreatitis regain good general health and return to their usual daily routine. Some authors have emphasized that endocrine function disorders are a common complication after severe acute pancreatitis has been treated by pancreatic resection
