12 research outputs found

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    ASD Rule-based Algorithm.

    No full text
    <p>ASD–Autism Spectrum Disorder; EHR–Electronic Health Records; ICD-9 –International Classification of Diseases 9<sup>th</sup> edition; DSM IV–Diagnostic and Statistical Manual of Mental Diseases 4<sup>th</sup> edition; PDD-NOS–pervasive developmental disorder not otherwise specified; sections 3a., 3b., 3c. refer to DSM IV ASD classification for Autism, Asperger’s and PDD-NOS, respectively</p

    Dimensionality reduction using the t-SNE algorithm on PheWAS codes.

    No full text
    <p>Colors label clusters from the k-means algorithm. The clusters are labeled according to the comorbidity category with the highest relative prevalence for that cluster—duplicate labels appear when there is more than one cluster dominated by the same category. (t-distributed Stochastic Neighbor Embedding—t-SNE, Phenotype Wide Association Study–PheWAS, BCH–Boston Children’s Hospital; CCHMC–Cincinnati’s Children’s Hospital and Medical Center; VUMC–Vanderbilt University Medical Center, Deve.–Developmental Disorders, Seiz.–Seizure Disorders, Psych.—Psychological Disorders).</p
    corecore