41 research outputs found

    The extracellular matrix proteins laminin and fibronectin modify the AMPase activity of 5'-nucleotidase from chicken gizzard smooth muscle

    Get PDF
    AbstractLaminin and fibronectin, but not collagen, affect the AMPase activity of the purified transmembrane protein 5'-nucleotidase. Laminin stimulates whereas fibronectin inhibits the AMPase activity of this ectoenzyme. The AMPase-modulating effects by these components of the extracellular matrix require a preincubation period of several hours when detergent-solubilized 5'-nucleotidase is employed, they can, however, instantaneously be elicited with liposome-incorporated 5/-nucleotidase

    Oxidative stress and inflammation distinctly drive molecular mechanisms of diastolic dysfunction and remodeling in female and male heart failure with preserved ejection fraction rats

    Get PDF
    Heart failure with preserved ejection fraction (HFpEF) is a complex cardiovascular insufficiency syndrome presenting with an ejection fraction (EF) of greater than 50% along with different proinflammatory and metabolic co-morbidities. Despite previous work provided key insights into our understanding of HFpEF, effective treatments are still limited. In the current study we attempted to unravel the molecular basis of sex-dependent differences in HFpEF pathology. We analyzed left ventricular samples from 1-year-old female and male transgenic (TG) rats homozygous for the rat Ren-2 renin gene (mRen2) characterized with hypertension and diastolic dysfunction and compared it to age-matched female and male wild type rats (WT) served as control. Cardiomyocytes from female and male TG rats exhibited an elevated titin-based stiffness (Fpassive), which was corrected to control level upon treatment with reduced glutathione indicating titin oxidation. This was accompanied with high levels of oxidative stress in TG rats with more prominent effects in female group. In vitro supplementation with heat shock proteins (HSPs) reversed the elevated Fpassive indicating restoration of their cytoprotective function. Furthermore, the TG group exhibited high levels of proinflammatory cytokines with significant alterations in apoptotic and autophagy pathways in both sexes. Distinct alterations in the expression of several proteins between both sexes suggest their differential impact on disease development and necessitate distinct treatment options. Hence, our data suggested that oxidative stress and inflammation distinctly drive diastolic dysfunction and remodeling in female and male rats with HFpEF and that the sex-dependent mechanisms contribute to HF pathology

    SARS-CoV-2 infects human cardiomyocytes promoted by inflammation and oxidative stress

    Full text link
    INTRODUCTION The respiratory illness triggered by severe acute respiratory syndrome virus-2 (SARS-CoV-2) is often particularly serious or fatal amongst patients with pre-existing heart conditions. Although the mechanisms underlying SARS-CoV-2-related cardiac damage remain elusive, inflammation (i.e. 'cytokine storm') and oxidative stress are likely involved. METHODS AND RESULTS Here we sought to determine: 1) if cardiomyocytes are targeted by SARS-CoV-2 and 2) how inflammation and oxidative stress promote the viral entry into cardiac cells. We analysed pro-inflammatory and oxidative stress and its impact on virus entry and virus-associated cardiac damage from SARS-CoV-2 infected patients and compared it to left ventricular myocardial tissues obtained from non-infected transplanted hearts either from end stage heart failure or non-failing hearts (donor group). We found that neuropilin-1 potentiates SARS-CoV-2 entry into human cardiomyocytes, a phenomenon driven by inflammatory and oxidant signals. These changes accounted for increased proteases activity and apoptotic markers thus leading to cell damage and apoptosis. CONCLUSION This study provides new insights into the mechanisms of SARS-CoV-2 entry into the heart and defines promising targets for antiviral interventions for COVID-19 patients with pre-existing heart conditions or patients with co-morbidities

    Actin: from structural plasticity to functional diversity

    No full text
    This article addresses the multiple activities of actin. Starting out with the history of actin's discovery, purification and structure, it emphasizes the close relation between structure and function. In this context, we also point to unconventional actin conformations. Their existence in living cells is not yet well documented, however, they seem to play a special role in the supramolecular patterning that underlies some of the physiological functions of actin. Conceivably, such conformations may contribute to actin's diverse activities in the nucleus that are poorly understood so far

    Detection of molecules and cells using nuclear magnetic resonance with magnetic nanoparticles

    No full text
    a b s t r a c t For the detection of small molecules, proteins or even cells in vitro, functionalised magnetic nanoparticles and nuclear magnetic resonance measurements can be applied. In this work, magnetic nanoparticles with the size of 5-7 nm were functionalised with antibodies to detect two model systems of different sizes, the protein avidin and Saccharomyces cerevisiae as the model organism. The synthesised magnetic nanoparticles showed a narrow size distribution, which was determined using transmission electron microscopy and dynamic light scattering. The magnetic nanoparticles were functionalised with the according antibodies via EDC/NHS chemistry. The binding of the antigen to magnetic nanoparticles was detected through the change in the NMR T 2 relaxation time at 0.5 T (E 21.7 MHz). In case of a specific binding the particles cluster and the T 2 relaxation time of the sample changes. The detection limit in buffer for FITC-avidin was determined to be 1.35 nM and 10 7 cells/ml for S. cerevisiae. For fluorescent microscopy the avidin molecules were labelled with FITC and for the detection of S. cerevisiae the magnetic nanoparticles were additionally functionalised with rhodamine. The binding of the particles to S. cerevisiae and the resulting clustering was also seen by transmission electron microscopy

    Current state of the structural analysis of the Actin: DNase I complex

    No full text
    The complex between rabbit skeletal muscle actin and bovine pancreatic DNase I (Lazarides & Lindberg, 1974) can be crystallized in three different forms. The x-ray structure of the orthorhombic form III has been solved to a resolution of 0.6nm (Suck, Kabsch & Mannherz, 1981). More recently the resolution has been increased to 0.45nm and the actin molecule has been unambigously identified in the map (Kabsch, Mannherz & Suck, 1985). This identification was derived from knowledge of the DNase I atomic structure (Suck, Oefner & Kabsch, 1984). In addition, only one combination of actin and DNase I density was found which is common to both the monoclinic (form II) and the orthorhombic (form III) crystals. It was concluded that this unique combination must represent the complex as found in solution
    corecore