31 research outputs found

    Lattice potentials and fermions in holographic non Fermi-liquids: hybridizing local quantum criticality

    Get PDF
    We study lattice effects in strongly coupled systems of fermions at a finite density described by a holographic dual consisting of fermions in Anti-de-Sitter space in the presence of a Reissner-Nordstrom black hole. The lattice effect is encoded by a periodic modulation of the chemical potential with a wavelength of order of the intrinsic length scales of the system. This corresponds with a highly complicated "band structure" problem in AdS, which we only manage to solve in the weak potential limit. The "domain wall" fermions in AdS encoding for the Fermi surfaces in the boundary field theory diffract as usually against the periodic lattice, giving rise to band gaps. However, the deep infrared of the field theory as encoded by the near horizon AdS2 geometry in the bulk reacts in a surprising way to the weak potential. The hybridization of the fermions bulk dualizes into a linear combination of CFT1 "local quantum critical" propagators in the bulk, characterized by momentum dependent exponents displaced by lattice Umklapp vectors. This has the consequence that the metals showing quasi-Fermi surfaces cannot be localized in band insulators. In the AdS2 metal regime, where the conformal dimension of the fermionic operator is large and no Fermi surfaces are present at low T/\mu, the lattice gives rise to a characteristic dependence of the energy scaling as a function of momentum. We predict crossovers from a high energy standard momentum AdS2 scaling to a low energy regime where exponents found associated with momenta "backscattered" to a lower Brillioun zone in the extended zone scheme. We comment on how these findings can be used as a unique fingerprint for the detection of AdS2 like "pseudogap metals" in the laboratory.Comment: 42 pages, 5 figures; v2, minor correction, to appear in JHE

    The role of the mitochondria and the endoplasmic reticulum contact sites in the development of the immune responses

    Get PDF
    Abstract Mitochondria and endoplasmic reticulum (ER) contact sites (MERCs) are dynamic modules enriched in subset of lipids and specialized proteins that determine their structure and functions. The MERCs regulate lipid transfer, autophagosome formation, mitochondrial fission, Ca2+ homeostasis and apoptosis. Since these functions are essential for cell biology, it is therefore not surprising that MERCs also play a critical role in organ physiology among which the immune system stands by its critical host defense function. This defense system must discriminate and tolerate host cells and beneficial commensal microorganisms while eliminating pathogenic ones in order to preserve normal homeostasis. To meet this goal, the immune system has two lines of defense. First, the fast acting but unspecific innate immune system relies on anatomical physical barriers and subsets of hematopoietically derived cells expressing germline-encoded receptors called pattern recognition receptors (PRR) recognizing conserved motifs on the pathogens. Second, the slower but very specific adaptive immune response is added to complement innate immunity. Adaptive immunity relies on another set of specialized cells, the lymphocytes, harboring receptors requiring somatic recombination to be expressed. Both innate and adaptive immune cells must be activated to phagocytose and process pathogens, migrate, proliferate, release soluble factors and destroy infected cells. Some of these functions are strongly dependent on lipid transfer, autophagosome formation, mitochondrial fission, and Ca2+ flux; this indicates that MERCs could regulate immunity

    Isolation of mitochondria-associated membranes and mitochondria from animal tissues and cells.

    No full text
    Many cellular processes require the proper cooperation between mitochondria and the endoplasmic reticulum (ER). Several recent works show that their functional interactions rely on dynamic structural contacts between both organelles. Such contacts, called mitochondria-associated membranes (MAMs), are crucial for the synthesis and intracellular transport of phospholipids, as well as for intracellular Ca(2+) signaling and for the determination of mitochondrial structure. Although several techniques are available to isolate mitochondria, only few are specifically tuned to the isolation of MAM, containing unique regions of ER membranes attached to the outer mitochondrial membrane and mitochondria without contamination from other organelles (i.e., pure mitochondria). Here we provide optimized protocols to isolate these fractions from tissues and cells. These procedures require 4-5 h and can be easily modified and adapted to different tissues and cell types

    Dysfunctions of the basal ganglia-cerebellar-thalamo-cortical system produce motor tics in Tourette syndrome

    No full text
    corecore