4 research outputs found

    CryoSat ocean product quality status and future evolution

    Get PDF
    The main objectives of this paper are to present the status of the CryoSat ocean products and to give an overview of all associated quality control and validation activities. Launched in 2010, the polar-orbiting European Space Agency’s (ESA) CryoSat mission was primarily developed to measure changes in the thickness of polar sea ice and elevation of the ice sheets. Going beyond its ice-monitoring objective, CryoSat is also a valuable source of data for the oceanographic community. The satellite’s radar altimeter can measure high-resolution geophysical parameters from the open ocean to the coast. To enable their full scientific and operational exploitation, the ocean products continuously evolve and need to be quality-controlled and thoroughly validated via science-oriented diagnostics based on multi-platform in situ data, models and other satellite missions. In support to ESA, the CryoSat ocean validation teams conduct this quality assessment for both the near real time and offline ocean products, both over short time scales (daily and monthly monitoring) and long-term stability (annual trends). Based on the outcomes from these quality analyses and feedback from scientific oceanographic community, ESA intends to upgrade the CryoSat Ocean processing chain for Autumn 2017

    SkySat Data Quality Assessment within the EDAP Framework

    No full text
    Cal/Val activities within the Earthnet Data Assessment Pilot (EDAP) Project of the European Space Agency (ESA) cover several Earth Observation (EO) satellite sensors, including Third-Party Missions (TPMs). As part of the validation studies of very-high-resolution (VHR) sensor data, the geometric and radiometric quality of the images and the mission compliance of the SkySat satellites owned by Planet were evaluated in this study. The SkySat constellation provides optical images with a nominal spatial resolution of 50 cm, and has the capacity for multiple visits of any place on Earth each day. The evaluations performed over several test sites for the purpose of the EDAP Maturity Matrix generation show that the high resolution requirement is fulfilled with high geometric accuracy, although various systematic and random errors could be observed. The 2D and 3D information extracted from SkySat data conform to the quality expectations for the given resolution, although improvements to the vendor-provided rational polynomial coefficients (RPCs) are essential. The results show that the SkySat constellation is compliant with the specifications and the accuracy results are within the ranges claimed by the vendor. The signal-to-noise ratio assessments revealed that the quality is high, but variations occur between the different sensors.ISSN:2072-429

    Bulk reprocessing of the ALOS PRISM/AVNIR-2 archive of the European Space Agency : Level 1 Orthorectified Data processing and Data Quality Evaluation

    No full text
    The Advanced Land Observing Satellite (ALOS) was launched on January 24, 2006, by a Japan Aerospace Exploration Agency (JAXA) H-IIA launcher. It carries three remote sensing sensors: the Advanced Visible and Near Infrared Radiometer type 2 (AVNIR-2), the Panchromatic Remote-sensing Instrument for Stereo Mapping (PRISM), and the Phased Array type L-band Synthetic Aperture Radar (PALSAR). Within the framework of ALOS Data European Node (ADEN), as part of the European Space Agency (ESA), has collected 5 years of data observed in Arctic, in Europe and in Africa through the ground stations of Tromsoe (Norway) and Matera (Italy). Some data has been repatriated directly from JAXA from the on-board recorder (in particular over Africa, outside the visibility of the stations). The data were available to the scientific users via on-request ordering from the stations through the ESA ordering system. In ordering to provide a better and easier access to the data in the framework of the ESA Third Party Missions, in 2015 ESA started a project aimed to repatriate the data from the stations, consolidate them, harmonise the format to the ESA standards. For the PALSAR data, view the different processing levels available to the users, ESA decided to setup a dissemination system, able to process automatically at the user demand the data to the requested level (on-the-fly processing). For the optical data, instead, the decision was to systematically process the PRISM and AVNIR-2 as orthorectified products (so to a higher level in respect of what available before) with a systematic quality control. This paper presents the functionalities of the new Level 1 orthorectified products and details the product geometric processing. A specific quality control strategy has been applied to associate QA to the entire archive. Also, validation methods are explained and the final accuracy specification results proposed

    CryoSat ocean product quality status and future evolution

    No full text
    The main objectives of this paper are to present the status of the CryoSat ocean products and to give an overview of all associated quality control and validation activities. Launched in 2010, the polar-orbiting European Space Agency’s (ESA) CryoSat mission was primarily developed to measure changes in the thickness of polar sea ice and elevation of the ice sheets. Going beyond its ice-monitoring objective, CryoSat is also a valuable source of data for the oceanographic community. The satellite’s radar altimeter can measure high-resolution geophysical parameters from the open ocean to the coast. To enable their full scientific and operational exploitation, the ocean products continuously evolve and need to be quality-controlled and thoroughly validated via science-oriented diagnostics based on multi-platform in situ data, models and other satellite missions. In support to ESA, the CryoSat ocean validation teams conduct this quality assessment for both the near real time and offline ocean products, both over short time scales (daily and monthly monitoring) and long-term stability (annual trends). Based on the outcomes from these quality analyses and feedback from scientific oceanographic community, ESA intends to upgrade the CryoSat Ocean processing chain for Autumn 2017
    corecore