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Abstract 

The main objectives of this paper are to present the status of the CryoSat ocean products and 

to give an overview of all associated quality control and validation activities. Launched in 

2010, the polar-orbiting European Space Agency’s (ESA) CryoSat mission was primarily 

developed to measure changes in the thickness of polar sea ice and elevation of the ice sheets. 

Going beyond its ice-monitoring objective, CryoSat is also a valuable source of data for the 

oceanographic community. The satellite’s radar altimeter can measure high-resolution 

geophysical parameters from the open ocean to the coast. To enable their full scientific and 

operational exploitation, the ocean products continuously evolve and need to be quality-

controlled and thoroughly validated via science-oriented diagnostics based on multi-platform 

in situ data, models and other satellite missions. In support to ESA, the CryoSat ocean 

validation teams conduct this quality assessment for both the near real time and offline ocean 

products, both over short time scales (daily and monthly monitoring) and long-term stability 
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(annual trends). Based on the outcomes from these quality analyses and feedback from 

scientific oceanographic community, ESA intends to upgrade the CryoSat Ocean processing 

chain for Autumn 2017. 
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CryoSat, Satellite Altimetry, Ocean, Quality assessment, Long-term stability, Ocean product 

evolution, Climate 
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1 Introduction 

CryoSat-2 (hereafter CryoSat) is a 7-year radar altimetry mission, launched on 8 April 2010 

with the primary objectives to monitor variations in the thickness of the Earth’s marine ice 

cover and continental ice sheets (Wingham et al, 2006). The primary payload on-board 

CryoSat is the Synthetic Aperture Interferometric Radar Altimeter (SIRAL), which has been 

monitoring the Earth's cryosphere with unprecedented accuracy and precision (Parrinello et 

al., 2017; introduction of this CryoSat Special Issue). However, beyond the primary mission 

objectives, CryoSat also represents a valuable source of data for the oceanographic 

community. The quasi-geodetic orbit of CryoSat and the design of its altimeter are 

fundamentally different from the majority of existing ocean altimeters with the ability to 

reach polar regions and obtain higher-resolution data. These two specialties have opened the 

door for innovative data processing developments and have also contributed to improving the 

characterisation of the surface topography dynamics over the polar, coastal and open ocean 

domains.  

The choice of the CryoSat orbit was initially the result of a trade-off between the desired high 

density of crossover points over the Polar Regions and the need to sufficiently cover south 

Greenland (see Figure 1). For this, the CryoSat orbit has a mean altitude of 717 km and a high 

inclination of 92°, allowing measurements at high latitudes (up to 88°). This orbit is non-sun-

synchronous and the satellite drifts through all angles to the Sun in approximately 16 months. 

The repeat cycle for CryoSat orbit should be 369 days, corresponding to 5344 revolutions. 

However, the CryoSat orbit does not repeat exactly after each cycle, as is usually the case for 

ocean-oriented altimetry missions. CryoSat's ascending nodes are repeated from cycle to 

cycle within a few tens of meters in order to have equidistant ascending equator crossings in 

the reference ground track. The descending nodes are however no longer equidistant due to a 

residual rotation of the eccentricity vector, entailing fluctuations up to nearly 4 km from cycle 

to cycle. Despite this drifting geodetic orbit, which is not optimal for oceanographic 

applications, CryoSat has compensated for the loss of ENVISAT for operational 
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oceanography and the characterisation of mesoscale dynamics (Labroue et al. 2012, 

Dibarbourre et al. 2011, Le Traon et al., 2015). CryoSat has also greatly contributed to 

enhancing the quality of the global mean sea surface (Andersen et al., 2015) and monitoring 

of the Arctic geostrophic circulation (Armitage et al., 2017), through the intensive sampling 

of polar and altimetric inter-track areas that are not covered by conventional ocean-oriented 

missions.  

 

Figure 1: (left) CryoSat ground track coverage from 01/10/17 to 05/10/17 (black lines) 

and (right) Geographical mask of acquisition according to operational mode (version 

3.9, in place since 30 January 2017) More details on: 

https://earth.esa.int/web/guest/missions/esa-operational-eo-missions/cryosat/content/-

/asset_publisher/VeF6/content/geographical-mode-mask-7107 

 

SIRAL is the primary instrument on-board CryoSat and is considered the precursor for a new 

generation of altimeter systems, like those for the Sentinel-3 and Sentinel-6 ocean topography 

missions. The SIRAL instrument combines a conventional pulse-limited radar altimeter with 

synthetic aperture and interferometric signal processing (see Table 1). This single frequency 

Ku-band radar altimeter is capable of operating in three modes: Low Resolution Mode 

https://earth.esa.int/web/guest/missions/esa-operational-eo-missions/cryosat/content/-/asset_publisher/VeF6/content/geographical-mode-mask-7107
https://earth.esa.int/web/guest/missions/esa-operational-eo-missions/cryosat/content/-/asset_publisher/VeF6/content/geographical-mode-mask-7107
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(LRM), Synthetic Aperture Radar (SAR) and SAR Interferometric (SARIn or SIN) burst 

modes.  

 

Table 1: SIRAL Instrument Characteristics 

Radio frequency    13.575 GHz (single frequency Ku-band) 

Pulse bandwidth    320 MHz (40 MHz for tracking only in SIN) 

Pulse Repetition Frequency (PRF) 1.97 kHz in LRM, 18.181 kHz in SAR and 

in SIN 

Burst mode PRF N/A in LRM, 85.7 Hz in SAR, 21.4 Hz in 

SIN 

Compressed pulse length   3.125 ns 

Pulse duration     44.8 µs 

Timing Regular PRF in LRM, burst mode in SAR 

and SIN 

Samples in echo    128 in LRM and SAR, 512 in SIN 

RF peak power    25 W 

Antenna size     2 reflectors 1.2 m x 1.1 m, side-by-side 

Antenna beamwidth (3 dB)   1.06º (along-track) x 1.1992º (across-track) 

Antenna footprint    15 km 

Range bin sample    0.2342 m for SAR / SIN, 0.4684 m for LRM 

Data rate 60 kbit/s for LRM, 12 Mbit/s in SAR, 2x12 

Mbit/s in SIN 

Instrument mass (with antennas)  90 kg redundant 

Instrument power    149 W 

Tracking cycle     47.17 ms (not a multiple of PRF) 

Burst repetition     11.8 ms (not a multiple of PRF) 

Antenna baseline length    1167.6 mm 

 

Each mode was initially designed for optimal measurements over different surfaces. The 

measurement modes are operated on-board according to a geographical mode mask (see 

Figure 1), which is updated regularly to allow for the changing extent of sea-ice and to track 

sea ice boundaries. Over the oceans and ice sheet interiors, CryoSat generally operates in 

LRM, similar to traditional pulse-limited radar altimeters. Over sea ice, SAR mode is used, 

whereby coherently transmitted echoes are combined via a delay-Doppler processing, 

reducing the illuminated surface area (Raney, 1998). SAR mode is mainly used to carry out 
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high-resolution measurements of floating sea ice. CryoSat's most advanced mode is generally 

used around the margins of continental ice sheets and over mountain glaciers where 

topography is steep. Here, the altimeter performs SAR altimetry measurements and uses a 

second antenna as an interferometer to determine the across-track angle to the earliest radar 

returns. This SARIn mode provides the exact location of the surface being measured. 

The CryoSat geographical mode mask is however not static and regular updates are made by 

the European Space Agency (ESA), considering requests from the coastal altimetry and 

oceanographic community. A number of changes have been made over the past seven years in 

order to stimulate research and development activities (e.g. SARIn boxes over Cuba and 

Greece islands, SAR box over North East Atlantic), and to support the quality assessment of 

Sentinel-3 ocean topography data during the commissioning phase (e.g. SAR box over the 

Pacific). Although the primary mission objective of CryoSat is to observe the cryosphere, its 

measurements over the ocean are indeed of great value to the oceanographic and climate 

research communities, as testified by many contributions to the Ocean Surface Topography 

Science Team (OSTST) meetings (http://www.aviso.altimetry.fr/en/user-corner/science-

teams/ostst-swt-science-team.html) and Coastal Altimetry Workshops 

(www.coastalt.eu/community). 

Consequently, thanks to fruitful collaborations with the Centre National d'Études Spatiales 

(CNES) and the National Oceanic and Atmospheric Administration (NOAA), ESA has 

developed and implemented its own CryoSat Ocean Processor (COP), to operationally 

generate CryoSat products specifically designed for oceanographers. The COP includes up-

to-date and ocean-oriented algorithms and corrections in order to bridge the gap between 

previous and future ocean missions as well as to contribute to a better knowledge of polar 

circulation. Since 2014, CryoSat data are processed simultaneously by both Ice and Ocean 

processors, generating a range of operational ocean products, with specific latencies, 

alongside the original ice products (see Figure 2). The CryoSat Ice processors and the COP 

operate almost independently and follow two distinct processing baselines. The COP uses 

http://www.coastalt.eu/community
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input Level 0 (L0) LRM and SAR data and generates Level 1B (L1B) and Level 2 (L2) 

products using Pseudo-Low Resolution Mode (PLRM) techniques over the SAR mode 

patches of the global mask, by processing the pulse-limited echoes incoherently, as in the 

conventional LRM concept (Scharroo, 2014). These products are generated at two latencies: 

Intermediate Ocean Products (IOP) generated typically two to three days after acquisition for 

medium-range ocean forecasting (using the CNES Medium Orbit Ephemeris (MOE)); and 

Geophysical Ocean Products (GOP) generated typically 30 days after acquisition with 

consolidated orbits (using the CNES Precise Orbit Ephemeris (POE)) and corrections for 

longer-term, retrospective and climate studies. They complement the Near-Real Time (NRT) 

Fast Delivery Marine (FDM) products currently generated by the Ice processor (using the 

Doris Navigator Orbit). 

 

Figure 2: Two independent CryoSat processors for ice and ocean applications (FDM: 

Fast Delivery Mode, LRM: Low Resolution Mode, PLRM: Pseudo-LRM, IOP: 

Intermediate Ocean Product, GOP: Geophysical Ocean Product). The suffixes _1, _1B, 

_2 and I2 refer respectively to Level-1 (Level-1B + Full Bit Rate products), Level-1B, 

Level-2 and In-Depth Level-2 products. More details can be found at 

https://earth.esa.int/web/guest/-/products-overview-

6975#_101_INSTANCE_VeF6_matmp 

 

https://earth.esa.int/web/guest/-/products-overview-6975#_101_INSTANCE_VeF6_matmp
https://earth.esa.int/web/guest/-/products-overview-6975#_101_INSTANCE_VeF6_matmp
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The CryoSat ocean products (FDM, IOP and GOP) are routinely monitored for Quality 

Control (QC) by the ESA/ESRIN Sensor Performance, Products and Algorithms (SPPA) 

office with the support of the Instrument Data quality Evaluation and Analysis Service 

(IDEAS+). These basic QC activities include checking data availability and processing 

completeness, the usage of the correct Auxiliary Data Files and calibration files in processing; 

and checking that no error flags are raised in the data.  

Alongside these activities, the ocean products are analysed in more detail at the UK National 

Oceanography Centre (NOC), within the framework of the CryoSat Ocean product Quality 

Control and Validation (CryOcean-QCV) project. This activity includes two complementary 

aspects: i) global assessment and quality control of the data over the oceans; ii) validation 

against in situ observations, other altimetry datasets and numerical models. The global 

assessment is conducted both daily (for FDM and IOP) and monthly (for FDM, IOP, and 

GOP) for the sea surface height anomaly (SSHA), significant wave height (SWH), radar 

backscattering coefficient (sigma0), wind speed, and mispointing parameters. The validation 

is performed monthly for the GOP SSHA, geostrophic velocity, SWH and wind speed. 

Results of the assessment and validation are extensively described in daily and monthly 

reports available on the ESA website (see Section 3) and have been recently published in 

Calafat et al. (2017).  

In parallel, a complementary quality assessment of the GOP Level 2 data is performed by the 

Delft University of Technology (TU Delft), as a continuation of previous calibration and 

validation activities performed by Naeije et al. (2011) and Schrama et al. (2014, 2016). The 

main goal is long-term monitoring; evaluating the stability of the measurement system and 

identifying potential biases and drifts. This is achieved through cross-calibration with 

concurrent ocean altimeter data from Jason-2 (launched 20
th
 June 2008) which is considered 

as the reference mission from the completion of its commissioning phase and until it moves to 

an interleaved orbit (September 2016). Independently, this is also addressed by comparing the 
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GOP sea level anomaly with in situ data from a selected set of tide gauges. Since a good 

altimeter ocean product requires a very precise determination of the orbital height, the quality 

of CryoSat’s precise orbit data from the Centre National d'Etudes Spatiales (CNES) is also 

assessed by independently generating precise orbits and cross-validating them (Schrama, 

2017).  

This paper provides an overview of the CryoSat ocean data quality status. After briefly 

presenting the COP baselines, the paper focuses on the activities and results associated with 

the ocean quality assessment, both from routine and long-term analysis. Finally, we discuss 

the forthcoming evolution of the processing chains and validation approaches to 

accommodate future releases of upgraded CryoSat ocean products. This paper is 

complementary to Bouffard et al. 2017 (this issue) focusing on the SIRAL performance, 

stability and quality control and validation activities over the sea-ice and land-ice domains. 

 

2 CryoSat Ocean Product Characteristics  

2.1 Content of the Level 2 Ocean Products  

The CryoSat L2 ocean products mainly contain measurements of the sea surface height 

(SSH), the SWH and wind speed derived from the processing of the radar waveforms in both 

LRM and PLRM (over SAR patches). This is done by using the Ocean-3 or MLE-4 algorithm 

(Amarouche et al., 2004), where the measured waveform is fitted with a 4-parameter return 

power model, according to weighted Least Square Estimators derived from Maximum 

Likelihood Estimators (MLE). Fitting the raw waveforms with a waveform model (Brown, 

1977) yields estimates of the location, amplitude and rising time of the waveform. The 

location or epoch is converted into the fundamental measure of range, which is then used to 

compute the SSH as detailed below. The amplitude of the waveform gives an estimate of the 

radar backscattering sigma0, which is then converted into wind following Abdalla (2007). 
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The waveform rise time (inversely proportional to the slope of the leading edge of the 

waveform) is directly linked to SWH in the Brown model. 

The principal parameter generated by the COP is the SSH over a reference ellipsoid (WGS84 

ellipsoid). SSH computation involves correcting the range for a series of propagation delays 

and geophysical effects and subtracting it from the orbit: 

SSH = altitude – (range + ssha_corrections)       (Eq.1) 

where ssha_corrections is a sum of all range and geophysical corrections, which are identified 

by the addends in the sum below and are also available as individual fields in the CryoSat 

ocean products:  

ssha_corrections = ionospheric correction + dry tropospheric correction + wet tropospheric 

correction + sea state bias + solid earth tide + ocean loading tide + ocean tide + long period 

ocean tide + geocentric pole tide + dynamic atmospheric correction + inverse barometric 

correction         (Eq.2) 

If a geoid model of sufficient accuracy is available, this can be subtracted from the corrected 

SSH to derive the dynamic topography of the ocean. However, more often the SSH is quality 

controlled, verified and used in the form of its anomaly (SSHA) with respect to a chosen 

Mean Sea Surface (MSS): SSHA = SSH – MSS      (Eq.3) 

For a description of the ocean products, we refer the reader to the CryoSat Product Handbook: 

https://earth.esa.int/documents/10174/125272/CryoSat_Product_Handbook. Further details on 

the specific geophysical parameters and corrections analysed in routine quality control and 

validation activities, as well as in the long-term analysis of the CryoSat ocean products can be 

also found in Sectionssections 3.1.1 and3.2.1 respectively. 

 

2.2 Ocean Product Processing Baselines   
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The first CryoSat Ocean Processor (COP) became operational on 10/04/2014 and IOP and 

GOP for the period from 10/04/2014 to 22/02/2015 were generated with the COP Baseline-A. 

After this date, the COP was upgraded to Baseline-B with a new processing configuration and 

new Calibration 1 (Cal1) corrections. New Look-Up Table (LUT) corrections and CNES orbit 

model standard (GDR-E), required to align the ocean products with the operational Baseline-

C ice products, were integrated on 01/04/2015. The Baseline-A ocean data were then 

definitively removed from the CryoSat dissemination server 6 months after the COP Baseline 

-B went in operation (see Figure 3). 

 

Figure 3: GOP availability and characteristics. Situation before November 2016. 

 

Within the framework of the COP evolution activities, 12 months of GOP data (July 2013 – 

June 2014) were reprocessed with the updated Baseline-B GOP, for the purpose of internal 

testing and to define new algorithms in preparation for the future COP Baseline-C. IDEAS+ 

performed detailed validation of a 5-day Test Data Set (TDS) from each month of the 

campaign, including the verification of quality flags, parameter and correction values, as well 

as auxiliary and calibration file usage within the products. Following the good validation 

results obtained (see Section 3.2), ESA decided to extend the Baseline-B reprocessing 

campaign to the full CryoSat GOP L1B and L2 dataset from November 2010 to March 2015 

and to disseminate the data to ocean users awaiting the COP Baseline-C and subsequent 

reprocessing campaign planned for 2018 (Figure 4). The full-reprocessed Baseline-B GOP 
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dataset from November 2010 to March 2015 is accessible to registered users from the 

CryoSat dissemination server (ftp://science-pds.cryosat.esa.int).  

 

Figure 4: GOP availability and characteristics. Situation on November 2017 (before the 

COP Baseline-C processing campaign). 

 

This Baseline-B reprocessed dataset is of good quality but, due to operational constraints, 

shows a bias and a slight inconsistency affecting LRM parameters (not PLRM). As detailed in 

Section 3.2, these expected biases could be easily corrected. Before 22/02/2015, the LRM 

range can be corrected by applying a spatial and temporal constant value of +0.7203 m. 

Before and after 27/03/2015, the LRM backscatter coefficients show an average difference of 

~ 0.37 dB, linked to the use of different Cal1 corrections (estimation of internal delay of the 

SIRAL through measuring the impulse response). This could cause a mean difference of ~ 

+0.4 mm, ~2 mm and 1.1 m/s for the retrieved LRM sea state bias (SSB), SWH and wind 

speed respectively. These known issues are not critical for most oceanographic applications 

and will be fixed with the introduction of COP Baseline-C and associated reprocessing 

campaign (see Section 5).  

In the meantime, the FDM (from the Baseline-C Ice processor) and the IOP and GOP (from 

the Baseline-B COP) continue to be distributed, regularly quality controlled and in-depth 

validated by ESA with the support of CryoSat mission partners from the TU Delft, the NOC 

and the IDEAS+ consortium.   

ftp://science-pds.cryosat.esa.int/
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3 Ocean Product Quality Assessment 

3.1  Routine Quality Control and Scientific Validation  

3.1.1 Data and Methods 

IDEAS+ performs routine QC activities on all operational CryoSat products, which include 

checking L0 data availability; acquisition tracking and L0 echo errors; the product headers; 

the product formats and software versions; the Auxiliary Data File usage; the external 

correction error flags and the analysis of measurement parameters. IDEAS+ uses a number of 

different tools and software to perform their operational analyses. The CryoSat-2 Quality 

Control – Quality Analysis of Data from Atmospheric Sensors (C2QC-QUADAS) is an 

updated tool installed in April 2015 at the Payload Data Segment (PDS) and on local 

machines at Telespazio Vega UK. It is configured to monitor both operational and 

reprocessed ice and ocean data products, and to automatically generate daily and monthly QC 

reports, which form the basis of the IDEAS+ daily performance reports. The Quality Control 

for CryoSat (QCC) tool is installed at the PDS and is designed to perform a set of 

configurable checks on each product immediately after production. This information is 

checked and included in the IDEAS+ daily performance reports, which are uploaded daily to 

the ESA CryoSat webpage (https://earth.esa.int/web/guest/missions/esa-operational-eo-

missions/cryosat/daily-performance-reports). 

Complementary to the IDEAS+ activities, more scientific Quality Control and Validation 

(CryOcean-QCV) activities are performed by the NOC using a fully automated system. This 

system first downloads the necessary CryoSat and validation datasets, then generates relevant 

statistics and figures using all available data, then compiles a report incorporating relevant 

text and figures, and finally uploads the report to the ESA file servers. The system is 

automated by a series of scripts, developed and implemented at the NOC. The data download 

is scheduled to run twice daily, whilst other scripts run daily or monthly, depending on the 

report type. 

https://earth.esa.int/web/guest/missions/esa-operational-eo-missions/cryosat/daily-performance-reports
https://earth.esa.int/web/guest/missions/esa-operational-eo-missions/cryosat/daily-performance-reports
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As part of the assessment, all CryoSat ocean data are screened according to scientific quality 

criteria (in addition to the quality control flags provided within the product files), including 

the use of minimum and maximum thresholds for the range and geophysical corrections and 

for the values of sigma0, SSHA, SWH and their corresponding 20 Hz standard deviations. 

The assessment is global in scope and includes coverage, completeness and data flow, global 

along-track analysis, crossover analysis, spectral statistics and derivation of error levels. 

Table 2 lists the models used to derive the various corrections, which in turn are used in the 

validation of the SSH and SSHA calculation in Baseline-B products, as described in (Eq. 1), 

(Eq.2) and (Eq.3). Note that some models include more than one correction, for example the 

2D Gravity Waves Model (MOG2D) is used to compute the Dynamic Atmosphere Correction 

(DAC), which includes the inverse barometric barometer correction. Another example is the 

ocean tide model, which includes also the loading tides and the long period tides. Such cases 

are highlighted in the table. The CNES-Collecte Localisation Satellites 11 (CNES-CLS 11) 

model is used as a reference MSS. It should be noted that the data products also contain 

alternative models for some of the variables, for example the Global Ocean Tide 4.8 

(GOT4.8) tide model (Ray, 2013) is available as an alternative to Finite Element Solution 

2014 (FES2014), and the Technical University of Denmark 10 (DTU10) MSS (Andersen and 

Knudsen, 2010) as an alternative to CNES-CLS11. 

 

Table 2 - Models used by the NOC for the various corrections in the COP Baseline-B.  

Corrections Measurement or Model Notes 

Ionospheric  

(iono) 

 Global Ionospheric Map (GIM) 

(Near-Real-Time) (Mannucci et 

al., 1998) 

Bent model (Bent et al., 

1975) where GIM not 

available 

Dry Tropospheric 

(dry_tropo) 

European Centre for Medium-

Range Weather Forecasts 

(ECMWF) 

 

Operational model at its 

highest spatial resolution 

(1/8º), 6-hr interval  

 

Wet Tropospheric 

(wet_tropo) 
ECMWF Operational model at its 

highest spatial resolution 
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(1/8º), 6-hr interval  

Sea State Bias  

(ssb) 

LRM/PLRM: CLS model (Tran, 

2012) 
 

Solid Earth Tide 

(solid_earth_tide) 

Cartwright-Tayler-Edden model 

(Cartwright and Tayler, 1971; 

Cartwright and Edden, 1973) 

 

Ocean Tide 

(ocean_tide_sol1) 
GOT4.8 (Ray, 2013)  

Ocean Tide 

(ocean_tide_sol2) 
FES2004 (Lyard et al., 2006)  

Ocean Loading Tide 

(loading_tide_sol1) 
GOT4.8 (Ray, 2013) 

Already included in 

ocean_tide_sol1  

Ocean Loading Tide 

(loading_tide_sol2) 
FES2004  

Already included in 

ocean_tide_sol2  

Long Period Tide 

(long_period_tide ) 
FES2004 

Already included in 

ocean_tide_sol1 and 

ocean_tide_sol2  

Geocentric Pole Tide 

(pole_tide) 
Desai (2002)  

Dynamic Atmospheric 

Correction 

 (dynamic atmosphere) 

MOG2D (Carrère and Lyard, 

2003) 
Includes low frequency 

Inverse Barometric 

(inverse_barometric)  
ECMWF 

Operational model at its 

highest spatial resolution 

(1/8º), 6-hr interval. 

Already included in 

MOG2D DAC.  

 

 

GOP SSHs are validated against tide gauge records from all around the world. The validation 

with tide gauge records includes both relative and absolute comparisons. The relative 

comparisons are between time series of sea level from tide gauges and GOP SSH anomalies; 

both referenced to an arbitrary zero level. The absolute validation is between absolute GOP 

SSHs and heights derived from tide gauge records, both ellipsoidal heights above the same 

reference ellipsoid, and is only possible at sites where there is a good levelling link between 

the tide gauge benchmark and a nearby Global Positioning System (GPS), i.e. the levelled 

height difference between the GPS station and the tide-gauge benchmark is known, and the 
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distance between the GPS station and tide gauge is small. These sites include La Coruña, 

Spring Bay, Marseille, Ponta Delgada, Chichijima, Virginia Key, and Funafuti. The distance 

between the tide gauge and the GPS station is smaller than 2.6 km in all cases, and smaller 

than 5 m at four of the stations. Tide gauge records are obtained from the UK National Tide 

Gauge Network archives at the British Oceanographic Data Centre (BODC) (at 15-minute 

resolution) and the University of Hawaii Sea Level Center (UHSLC) (at 1-hour resolution). 

Ellipsoidal heights were computed using GPS station data obtained from Système 

d'Observation du Niveau des Eaux Littorales (SONEL) (http://www.sonel.org/). All GPS 

heights are defined with respect to ITRF2008, in consistency with the sea surface heights 

from CryoSat. GOP SSH anomalies are also compared with Argo-derived steric heights over 

the global oceans. The set of Argo profiles were obtained from the EN4.1.1 data set made 

available by the Met Office Hadley Centre (http://hadobs.metoffice.com/en4/).  

The GOP SWH is validated against both in situ hourly buoy data obtained from the National 

Data Buoy Center (NDBC) and hourly modelled data from the WaveWatch III global wave 

model obtained from the Pacific Islands Ocean Observing System at the University of 

Hawaii. The Wavewatch III model provides hourly values of SWH over the global ocean at 

1/2° spatial resolution. The Wavewatch III model is a third-generation wave model developed 

at NOAA/National Centres for Environmental Prediction (NCEP), which solves the random 

phase spectral action density balance equation for wave-number direction spectra (Tolman, 

2009). The comparison between CryoSat SWH and buoy data are restricted to buoys located 

in the open ocean no closer than 20 km to the coast.  

Finally, as part of the validation activities, geostrophic velocities are derived from the GOP 

SSHA and compared High Frequency (HF) radar surface velocities from four stations around 

the Australian coast (Bonney Coast, Rottnest Shelf, South Australia Gulfs, and Turquoise 

Coast) from the Australian Ocean Data Network (https://portal.aodn.org.au/), as well as 

against geostrophic velocities from the Ocean Surface Current Analyses Real time (OSCAR) 

(http://www.oscar.noaa.gov). The HF radar data are provided on a fine regular grid with a 1-

http://www.sonel.org/
http://hadobs.metoffice.com/en4/
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hour temporal resolution, whereas the OSCAR data are provided on a 1/3-degree grid with a 

5-day temporal resolution. 

 

3.1.2 Main Results 

The full results of the CryOcean-QCV are disseminated in daily and monthly reports that are 

available on the ESA SPPA web server (https://earth.esa.int/web/sppa/mission-

performance/esa-missions/cryosat/quality-control-reports/ocean-product-quality-reports). A 

comprehensive summary of the results has been recently published in Calafat et al. (2017). 

We provide here some examples to illustrate the level of analysis and validation. 

The first example concerns the FDM data products, which are made available as soon as 

possible after acquisition, normally within 3 hours. This short latency from acquisition to 

dissemination is essential to enable NRT applications, and  is assessed within the CryOcean-

QCV reports. For example, Figure 5 illustrates the distribution of FDM data delivery latency 

for September 2016 and is typical of many of the monthly plots. The majority of data were 

delivered within 2–3 hours of the middle time of the measurements within the files. 

https://earth.esa.int/web/sppa/mission-performance/esa-missions/cryosat/quality-control-reports/ocean-product-quality-reports
https://earth.esa.int/web/sppa/mission-performance/esa-missions/cryosat/quality-control-reports/ocean-product-quality-reports
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Figure 5: Histogram of the FDM data delivery latency for September 2016. The y-axis 

shows the number of files that are made available with a delay of x-hours with respect to 

the mean time of the records stored in the file. 

Our second example concerns the SWH, which is an important measurement from satellite 

altimetry for wave climate studies, the study of extreme events and the validation of wave 

models. As shown in Calafat et al. (2017), there is a good agreement between SWH from 

CryoSat and that obtained from the WWIII data. A typical example of the agreement between 

WWIII and GOP can be seen in the similar distributions of SWH in Figure 6. 

 

Monthly Quality Report for
September 2016

Version 1.1r1 - 16/01/17

CryOcean-QCV

Figure 2. Histogram of the FDM data latency for September 2016. The y-axis denotes the
number of files that are made available with a delay of x-hours with respect to the mean
time of the records stored in the file.

1.3. Data coverage and completeness

Present in 
month

Theoretical max. Percentage (%)

Total 1802084 1877110 96.0

Oceans and lakes 1229388 1256190 97.9

Table 1. Number of total (land and ocean/lake) and only ocean/lake records (based on the 

surface_type flag) together with their percentage relative to the theoretically expected 
number of measurements from the orbits ground tracks for September 2016. Theoretical 
values are also shown.

5
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Figure 6: Histograms (normalised to have a total area of 1) of the GOP SWH (blue bars) 

and the SWH from the Wavewatch III model (red line) for September 2016. 

 

Two examples are used to illustrate the quality of the SSH measurements from CryoSat and 

the derived geostrophic velocities. Geostrophic currents are calculated as a function of 

latitude from GOP data within two study regions, one region in the Atlantic Ocean (20˚N – 

40˚N, 315˚E – 325˚E) and another in the Pacific Ocean (20˚N – 40˚N, 220˚E – 230˚E). The 

velocities are calculated using the optimal difference operator by Powell and Leben (2004) 

and are compared with the equivalent data from OSCAR in Figure 7 for September 2016. 

With a few obvious exceptions in the Atlantic at lower latitudes and at 33˚N (Figure 7, top), 

the OSCAR and GOP derived velocities agree in terms of magnitude and direction. 

CryOcean-QCV Monthly Quality Report for
September 2016

Version 1.1r1 - 16/01/17

4.1.4. Validation of GOP SWH against Wavewatch III model data

Figure 115. Histograms (normalized to have a total area of 1) of the GOP SWH (blue bars)
and the SWH from the Wavewatch III model (red line) for September 2016.

86
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Figure 7: Comparison of the GOP geostrophic velocity anomalies with geostrophic 

velocity anomalies from the Ocean Surface Current Analyses – Real time (OSCAR) for 

September 2016 in the Atlantic (top, 20˚N – 40˚N, 315˚E – 325˚E) and Pacific (bottom, 

20˚N – 40˚N, 220˚E – 230˚E) boxes as a function of latitude (i.e., for each latitude the 

geostrophic velocities have been averaged over the longitudes within the box). GOP 

geostrophic velocities have been computed using the optimal difference operator by 

Powell and Leben (2004). 

Monthly Quality Report for
September 2016

Version 1.1r1 - 16/01/17

CryOcean-QCV

Figure  118.  Comparison  of  the  GOP geostrophic  velocity  anomalies  with  geostrophic
velocities anomalies from the Ocean Surface Current Analyses – Real time (OSCAR) for
September 2016 in the Atlantic (top, 20ºN – 40ºN, 315ºE – 325ºE) and Pacific (bottom,

89
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The monthly reports produced for CryOcean-QCV include a selection of randomly selected 

Argo floats for which the steric height anomalies are calculated over the top 1000 m. These 

anomalies are then compared with the SSHA from GOP data. A sample plot is shown in 

Figure 8 (top), and the movement of the given float, in this case ID 5904174, is given in 

Figure 8 (bottom). The GOP SSHAs are calculated by interpolating the ground track data 

from a 1˚ by 1˚ grid, every 10 days in order to match the 10-day cycle of an Argo float. 

 

Figure 8 Comparison of the GOP SSHA and the steric height anomaly (referred to 1000 

m) for one particular Argo float (top). The location of the Argo float over time (bottom). 

CryOcean-QCV Monthly Quality Report for
September 2016

Version 1.1r1 - 16/01/17

provided by Argo floats over the period April 2014 to September 2016. Each dot in the map
represents the mean position of each Argo float used in the validation.

Figure 122. Comparison of the GOP SSH anomaly and the steric height anomaly (referred
to 1000 m) for one particular Argo float (top). The location of the Argo float over time is also
shown (bottom).

92
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In addition to the CryOcean-QCV analysis, which mainly focuses on short-term variability 

(daily, monthly) and seasonal time scales, complementary analyses are conducted to assess 

the long-term performance and stability of the GOP and to identify potential drift and bias. 

 

3.2 Long- Term Analysis and Data Quality Stability 

3.2.1 Data and Methods 

To assess the long-term quality of the CryoSat GOP in comparison with other reference ocean 

altimetry missions, geophysical parameters such as SSHA, SWH, backscatter (sigma0), and 

wind speed referenced to 10 m height (U10) are monitored and cross-calibrated. This is done 

using the Radar Altimeter Database System (RADS) http://rads.tudelft.nl/rads/rads.shtml 

(Scharroo et al., 2016). RADS is a coordinated effort between EUMETSAT, NOAA, and 

Delft University of Technology (TU Delft), and constitutes an internationally appreciated 

validated, calibrated and consistent altimeter data set, comprising over 20 years of sea level 

products, to help both expert and entry-level users in science and education to apply altimeter 

information in their own investigations. Since multiple users are involved in examining the 

data and the regular updates to the database, RADS is one of the most accurate and complete 

databases of satellite altimeter data to date, and therefore is most suited for referencing and 

cross-calibrating the CryoSat GOP data. The 1 Hz L2 CryoSat data that are available in 

RADS, have been constructed from re-tracking L1B LRM data and wherever the instrument 

is in SAR mode, using the Full Bit Rate (FBR) data to reduce SAR to PLRM (Scharroo et al., 

2013; Scharroo, 2014). 

The operational Baseline-B GOP L2 data that are analysed here, are distilled from the ESA’s 

ftp server and cover the period from April 2015 to July 2016 and the reprocessed data from 

February 2012 to April 2015. First, they are stored in subcycles, according to the RADS cycle 

definition for CryoSat, with the following sequence: 4 times (29+29+27 days) plus 29 days 

makes 369 days, which is the theoretical repeat cycle for CryoSat. The data are also archived 

in RADS format, choosing the appropriate data fields to facilitate the cross-calibration with 

http://rads.tudelft.nl/rads/rads.shtml
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Jason-2, for example by decomposing the total tide into ocean tide and load tide. The DAC is 

considered as the total inverse barometric correction (the static low frequency part and the 

high frequency part of the tidal and atmospheric signal). The square root of the off-nadir 

pointing is taken, and the orbital altitude, geoid, and mean sea surface are referenced to the 

TOPEX reference ellipsoid (a=6378136.3 m, 1/f=298.257). The remaining GOP data fields 

are untreated and copied directly to the corresponding RADS fields. SSHA are calculated and 

Jason-2 data are chosen for comparison and crossover analyses for the same period (Jason-2 

cycles 132 to 294). Table 3 summarises which data fields from the GOP are entered into 

RADS and describes the treatment of the data. The data are not altered in order to ensure that 

they remain as close as possible to the original GOP product.  

 

Table 3: The RADS format and the treatment of the L2 GOP data when entered into the 

RADS. The GOP field numbers are taken from the IOP and GOP Product Format 

Specification (ACS/ CLS, 2013). 

RADS 

item 

Item 

no. 

RADS 

comment 

GOP 

field 

GOP to RADS 

treatment 

Time 101 UTC since 1985-01-01 00:00:00 [s] 1 d*86400+s+μs/1d6+sec00
a 

Lat 201 Latitude [degrees north] 7 untreated 

Lon 301 Longitude [degrees east] 9 untreated 

Alt 425 Orbital altitude [m] 11 WGS84 to TOPEX ref.
b 

Alt rate 501 Orbital altitude rate [m/s] 13 untreated 

Range 601 
Instrument corrected altimeter range 

[m] 
21 untreated 

Dry tropo 701 Dry tropospheric correction [m] 36 untreated 

Wet tropo 802 Wet tropospheric correction [m] 37 untreated 

Iono 906 GIM ionospheric correction [m] 40 untreated 

Inv bar 1002 
High-frequency inverse barometric 

correction [m] 
39–38 untreated

c 
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Inv bar 1004 
Total inverse barometric correction 

[m] 
39 untreated 

Tide solid 1101 Solid earth tide [m] 84 untreated 

Tide 

ocean 
1213 FES2004 ocean tide [m] 79–83 total ocean tide − load tide 

Tide 

ocean 
1219 GOT4.8 ocean tide [m] 78–82 total ocean tide − load tide 

Tide load 1313 FES2004 load tide [m] 83 untreated 

Tide load 1319 GOT4.8 load tide [m] 82 untreated 

Tide pole 1401 Pole tide [m] 85 untreated 

SSB 1502 CLS sea state bias [m] 41 untreated 

Geoid 1610 EGM2008 height [m] 74 WGS84 to TOPEX ref. 

MSS 1614 DTU10 mean sea surface [m] 73 WGS84 to TOPEX ref. 

MSS 1615 CNESCLS11 mean sea surface [m] 72 WGS84 to TOPEX ref. 

SWH 1701 Significant wave height [m] 44 untreated 

Sig0 1801 Backscatter coefficient [dB] 51 untreated 

Wind 

speed 
1901 Altimeter wind speed [m/s] 87 untreated 

Range 

rms 
2002 Std dev of range (20 Hz) [m] 23 untreated 

Range 

num 
2101 

Number averaged 20 Hz ranges 

[count] 
24 untreated 

Topo 2206 
 MACESS ocean depth/elevation 

[m] 
75 untreated 

Peakiness 2401 Peakiness [-] 16 untreated 

Flags 2601 Engineering flags [-] 90&14 RADS flags (bits 2,4,5,11) 

SWH rms 2802 Std dev of SWH (20 Hz) [m] 47 untreated 

Sig0 rms 2902 Std dev of sig0 (20 Hz) [dB] 53 untreated 

Off nadir 3001 
 Waveform off-nadir pointing 

[degrees] 
62 take square root 

Ref frame 3801 Reference frame offset [m] - - 
d 
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a
sec00=473299200 sec. offset to get time relative to 1 January 1985 instead of 1 January 2000 

b
RADS employs the TOPEX ellipsoid definition: a = 6378136.3m, 1/f = 298.257 

c
correction used for tide gauges analyses 

d
unknown a priori and therefore not applied initially 

 

SSHA are subsequently created by taking the difference between orbit and range and 

subtracting all corrections and lastly subtracting a MSS model, as described in (Eq. 1), (Eq.2) 

and (Eq.3). For the corrections and models that have multiple options, it is necessary to 

choose the same correction as is used in the altimeter data you want to compare (Jason-2 in 

this case).  

To validate the ocean sea level data with tide gauge observations the revised local reference 

data are extracted from the Permanent Service for Mean Sea Level (PSMSL) database at 

NOC/ Natural Environment Research Council (NERC) (Holgate et al., 2013; PSMSL, 2016). 

An effort is made to ensure that before comparison both altimetry and tide gauge data have 

matching physical content by using monthly averaged tide gauge data, thereby filtering out 

most of the residual high frequency tidal and atmospheric signals. The total ocean tide 

correction and the high frequency part of the atmospheric signal are applied to the altimeter 

data, therefore keeping the low frequency static inverse barometer in the altimeter data. Next, 

monthly altimeter grid solutions are constructed, combining data per month (~1 subcycle), 

and spatially Gaussian distance weighting gridding with a σ =0.5°, a horizon of 3σ and grid-

spacing of 0.25°, and used to produce SSHA time series at the tide gauge station locations. 

All the available, matching tide gauge and altimeter data were used, and an integer number of 

consecutive years were analysed to enable the estimation of drift over the years 2013, 2014, 

and 2015. The tide gauge data available for the chosen time span were selected, reducing the 

dataset from 1468 gauges to 491. For the next step in aligning the altimetry based SSHA to 

the tide gauge measurements; only stations with a correlation higher than 0.7 and a standard 

deviation of σ < 0.1m were considered. A common bias in the tide gauges, which are 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 

 26 

referenced to local mean sea level and not to the TOPEX reference ellipsoid, was also 

removed. The 72-cm offset present in the GOP data prior to February 2015 (see Section 2.2) 

was also removed, and stations with data gaps were excluded. This reduced the dataset further 

to 213 gauges, which were used for the following statistical analyses. 

 

3.2.2 Main Results 

Within the framework of long-term GOP analysis, orbit crossover analysis was performed on 

the L2 GOP altimeter data, spanning February 2012 to July 2016. Crossovers were analysed 

between CryoSat and Jason-2 passes (dual satellite crossovers) and between ascending and 

descending passes from CryoSat and Jason-2 separately (single satellite crossovers), with a 

maximum crossover time difference of 15 days; a narrower time interval would leave very 

few CryoSat crossovers spread non-uniformly over the globe. 

The mean crossover differences between CryoSat and Jason-2 passes provide the biases 

between CryoSat and the calibrated Jason-2. As a reference for both satellites the 

CNES/CLS11 mean sea surface and the GOT4.8 ocean tide and ocean load corrections are 

applied. Comparing CryoSat with Jason-2 (CryoSat minus Jason-2) basically gives a range 

bias with respect to Jason-2. However, for Jason-2, a calibrated range bias with respect to the 

TOPEX reference ellipsoid is already applied and therefore the mean crossover difference 

between CryoSat and Jason-2 gives a calibrated range bias for CryoSat. From the statistics, an 

overall range bias change is observed in February 2015, where the SSHA cycle averages 

change from minus 72cm (prior to February 2015) to approximately zero (after February 

2015) due to configuration changes in the Baseline-B COP baseline (see Section 2). As a 

result of this change, it was decided to investigate a 1-year period before this date (period 1: 

15 June 2013 to 15 June 2014) and a 1-year period after (period 2: 5 June 2015 to 15 June 

2016). Table 4 provides the matching overall dual-crossover statistics. Crossovers have been 

edited to discard SSHA crossover values greater than two times the standard deviation, in 

order to incorporate only crossovers that are not strongly affected by ocean mesoscale 
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variability. As stated before, the standard criterion t < 2 days would eliminate too many 

crossovers.  

SWH, sigma0 and wind speed have also been included in the crossover analyses. Since the 

two points evaluated in a crossover analysis can be relatively far apart in time for the time 

scales at which these parameters can change, it can still be seen that taking the mean of the 

crossover differences would average out those difference (mean values are close to zero). 

They do constitute a means of quality checking the parameters. Therefore, it can be concluded 

that the CryoSat GOP is of the same quality as the CryoSat RADS product and also very 

close to the calibrated Jason-2. The only striking difference is in the range and the sigma0 

biases. This difference should be studied in more detail because the SSB also has a 

dependency on sigma0. 

 

Table 4: Dual crossover mean and standard deviation from CryoSat and Jason-2 orbit 

crossovers for SSHA, SWH, σ
0
, and wind speed. 

 June 2013 until June 2014 June 2015 until June 2016 

 
SSHA 

[m] 

SWH 

[m] 

sigma0 

[dB] 

 Wind 

speed 

[m/s] 

SSHA 

[m] 

SWH 

[m] 

sigma0 

[dB] 

 Wind 

speed 

[m/s] 

Mean -0.787 -0.011 -0.780 1.890 -0.067 -0.009 1.155 -3.129 

RMS 0.043 1.202 1.806 4.233 0.047 1.253 1.796 4.380 

 

Finally, Table 5 provides for the same data products and data fields the satellite single 

crossovers (for period 2: 5 June 2015 to 15 June 2016). When edited exactly in the same 

manner, the SSHA crossover RMS is slightly higher for CryoSat GOP than for CryoSat 

RADS and Jason-2. We conclude that the GOP product is of similar quality as both CryoSat 

RADS and Jason-2 RADS. The latter has lower crossover RMS because of its geographically 

limited coverage up to 66°N and 66°S.  



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 

 28 

 

Table 5: Single crossover statistics for CryoSat GOP data, for CryoSat RADS data and 

Jason-2 RADS data (period 2: June 2015 until June 2016) 

 SSHA[m] SWH [m/s]  sigma0 [dB] Wind speed [m/s] 

 mean RMS mean RMS mean RMS mean RMS 

CryoSat 

GOP 

0.001 0.063 -0.003 1.259 0.023 2.256 -0.063 4.898 

CryoSat 

RADS 

0.005 0.056 -0.035 1.286 0.049 1.995 -0.139 3.996 

Jason-2 

RADS 

0.000 0.040 -0.005 1.235 -0.003 1.650 0.009 3.953 

 

There are two ways to estimate the timing bias, either from crossover minimisation or from 

the dependency of along-track residuals with the satellite range rate; both give similar results. 

The envelope of timing biases from crossovers (with a maximum crossover standard 

deviation multiplied by two and a maximum time gap of 15 days) has been computed for the 

CryoSat GOP covering the period from February 2012 to July 2016. The overall average 

timing bias is 0.1 ms, Figure 9 shows the daily estimated values (green), along with the mean 

crossover difference (red) and RMS (blue). The regression lines suggest a very steady timing 

bias, and also a stable crossover RMS at around 5 cm. If we exclude the main occurrence of 

the 72-cm offset in February 2015 and perform a fit to the SSHA crossover mean RMS prior 

to and after that date, the drift in both cases is smaller than 0.5 mm/ year, indicating a very 

good stability comparable with the general uncertainty in sea level trend estimates. This 

conclusion of course assumes that the calibrated reference mission Jason-2 is not drifting. 

Any similar drifts in one or more of the corrections used would not be revealed by this cross 

calibration. 
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Figure 9: Range bias (red) and timing bias (green) for CryoSat GOP cycles 24 - 81 

(February 2012 until July 2016) along with the crossover standard deviation (blue). 

 

After applying the 72-cm bias change (subtracting a 72 cm bias) the comparison is conducted 

with the 213 selected tide gauges. The result is a mean correlation of R=0.85, a mean standard 

deviation of σ=5.6 cm, and a mean tilt of the difference of −0.5 mm/year (SSHA – tide 

gauge), which is comparable with the number found previously for the stability of the range. 

It is known that certain tide gauges may have problems if they are located on sediment and 

not bedrock or if they suffer from unknown vertical tectonic motions. However, the screening 

method adopted should remove most tide gauges affected by these problems. Figure 10 plots 

the locations of the 213 tide gauge stations used in this study (grey crosses). The blue crosses 

represent the ten best comparisons when sorted by correlation and the red crosses represent 

the worst two comparisons when sorted by standard deviation. 
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Figure 10: Locations of the 213 PSMSL tide gauge station used in this study (grey). The 

10 best solutions sorted by correlation (blue), and the 2 worst solutions sorted by 

standard deviation (red). 

 

Figure 11 shows the three best solutions in terms of correlation and the worst solution in 

terms of standard deviation, where the correlation (Co), the standard deviation (St), the bias 

(Bi), and the trend difference (Sl) are given (refer to Figure 10 for the position of 

corresponding tide gauges). 
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Figure 11: Sea level data comparisons between PSMSL tide gauges (in blue) and 

CryoSat GOP (red). Locations of the tide gauge stations are reported on Figure10. The 

top two graphs and the bottom left graph show the three best results in terms of 

correlation (>0.95) and the bottom right graph shows the worst result in terms of 

standard deviation (≤ 10 cm). The graphs are each annotated with the correlation (Co), 

the standard deviation (St), the bias (Bi), and the trend difference (Sl). 

 

In summary, the long-term analysis of CryoSat GOP shows a steady timing error of 0.1 ms, 

and a stable range bias of 6.7 cm with no marked drift with respect to calibrated Jason-2 

(TOPEX reference ellipsoid and reference mission). These results obtained over the ocean are 

perfectly consistent with the results deduced from external calibrations performed on the 

ground at the Svalbard transponder, which also show very stable values (see Bouffard et al., 

2017; this issue). When validated against 213 selected PSMSL tide gauges, covering the 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 

 32 

period 2013-2015, the altimeter data have a correlation R=0.85, a mean standard deviation σ 

=5.61 cm, and a drift of −0.54 mm/year, again showing very stable measurements and no 

marked drift in the reference frame. Considering that TU Delft’s orbit solutions and laser 

residuals RMS are 0.4 mm/s and 1.27 cm, respectively and that they match the CNES POE 

(used in GOP) to within 1.5 cm radially, without showing any drift (Schrama et al., 2016; 

Schrama, 2017), the final conclusion is that the CryoSat GOP Baseline-B are comparable 

with the reference missions. Complementary analyses on reprocessed and upgraded GOP 

datasets (Baseline-C, see Section 4) are planned for 2018, in order to extend our results over a 

larger period and therefore confirm that the CryoSat ocean products would represent a 

valuable addition to long-term climate studies 

 

4 Brief Overview of CryoSat Ocean Processing Evolutions 

ESA are continually working to improve the quality and scientific value of the CryoSat ocean 

products, by implementing improvements to the processing chains. Work is currently 

underway to test and implement the latest version processors, the COP Baseline-C. The 

Baseline-C upgrade concerns both the L1B and L2 processing chains and is expected to bring 

significant improvements to the quality of L1B and L2 products relative to the previous 

Baseline-B products. The new processors will generate ocean products for all data acquisition 

modes (LRM, SAR and SARIn), therefore providing complete data coverage for ocean users. 

The upgrade will add innovative algorithms to the ocean chains and refine some of the 

already implemented ones, and will add a number of new parameters and corrections to the 

products. Some of the expected evolutions are briefly described below. Routine distribution 

of the COP Baseline-C is starting in November 2017 (see Figure 4). 
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4.1 New NetCDF and Pole-2-Pole Ocean Product Format 

In order to ensure the homogeneity with other altimetry missions and to maximise the uptake 

and use of CryoSat data by scientific users, ESA are currently upgrading the existing 

processing chains in order to distribute all CryoSat products in NetCDF format compliant 

with the Climate and Forecast Convention (http://cfconventions.org). NetCDF is considered 

to be more user-friendly than the Baseline-B COP Earth Explorer format, with data stored in a 

way to allow efficient subsetting. Interfaces to NetCDF are based on the C library and are 

available in numerous languages (e.g. Matlab, IDL, Python, Octave), therefore enabling a 

wide range of software applications to read NetCDF files. Moreover, the Baseline-C COP 

will generate new L2 Pole-to-Pole (P2P) products for IOP and GOP. Two P2P products will 

be generated per orbit, combining successive products spanning between the North and South 

poles into multi-mode concatenated products.  

 

4.2 New Near Real Time Ocean Products 

The COP architecture was initially designed so that it could be easily adapted to generate L1B 

and L2 products in NRT with an approximate latency of 3 hours from data acquisition. In 

particular, the COP is already able to use the Doppler Orbitography and Radiopositioning 

Integrated by Satellite (DORIS) Navigator Orbit (Jayles et al., 2015). Nevertheless, the 

current Baseline-B COP configuration requires some adaptations to generate NRT Ocean 

Products (NOP). Numerous evolutions will be implemented to significantly improve the 

quality of the NOP with respect to the current FDM products generated by the Ice processor, 

such as the integration of full SAR delay-Doppler processing (see Section 4.2) and the 

addition of new ad-hoc corrections. As a result, the NOP is intended to replace the FDM 

products in mid- 2018. 

 

4.3  Full Ocean Delay-Doppler Processing 

http://cfconventions.org/
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ESA’s SAR Altimetry MOde Studies and Applications (SAMOSA) retracker algorithm 

(Cotton et al, 2016) is being implemented and tested within the Baseline-C COP L2 

processor. For this, the SAMOSA retracked SAR and SARIn waveforms are generated using 

new processors, which build on the Ice processor heritage but are correctly reconfigured for 

ocean applications. The SAMOSA retracker computes the 20 Hz epoch, amplitude, SWH and 

wind speed for SAR and SARIn (without using phase information). The 20 Hz altimeter 

range is then derived from the computed epoch and from the retracker range. The backscatter 

coefficient is derived from the computed amplitude and a scaling factor derived from the 

orbits and Automatic Gain Control (AGC) values. 1 Hz altimeter range, SWH and backscatter 

coefficients are also computed, simply by averaging the 20 Hz parameters. The SAMOSA 

derived 1 Hz and 20 Hz parameters are generated together with the PLRM parameters using 

the MLE-4 ocean retracker not only for SAR (as in COP Baseline-B) but also for SARIn 

patches. Therefore, the format of the L2 NOP, IOP and GOP products will be updated to 

include all these new fields. 

 

4.4 New Range and Geophysical Corrections  

The Baseline-C COP products will include several new range and geophysical corrections, 

such as improved ocean and loading tidal corrections from the recent FES2014 and GOT4.10 

(Zawadzki et al 2016; Carèrre et al. 2016; https://datastore.cls.fr/catalogues/fes2014-tide-

model/) as well as the updated MSS from CNES (MSS_CNES_CLS15) and DTU (DTU 

MSS15). Since CryoSat does not carry an on-board microwave radiometer, one of the major 

COP upgrades concerns the inclusion of an improved wet tropospheric correction. The 

algorithm developed by the University of Porto, in the scope of the ESA CryoSat Plus for 

Ocean (CP4O) project, combines external wet path delay data from multiple sources by 

space-time objective analysis. More details on the approach can be found in Fernandes and 

Lazàro (2016). 
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5 Conclusions and Perspectives 

The quality control and validation activities performed by ESA with the support of the NOC, 

TU Delft and IDEAS+ demonstrate that the CryoSat ocean products compare very well with 

in situ measurements and model outputs and, in spite of the short analysed periods, do not 

show any significant drift over time. The results confirm that the ocean products are 

comparable with reference ocean-oriented altimetry missions (e.g. Jason-2) and are perfectly 

suited for oceanographic applications. 

The crossover analyses of GOP already revealed a very stable monitoring system capable of 

contributing to the Global Climate Observing System (GCOS) Essential Climate Variables 

(ECVs). ESA will continue to track possible biases, drifts and jumps in the data, and try to 

identify the potential causes and implement improved corrections. Another exercise will be to 

investigate the transitions from SAR to LRM and vice versa. Suggestions for improving 

sigma0 and wind speed could lead to reduced crossover RMS together with a tailored SSB 

correction. Concerning the tide gauge comparisons; the analyses will be extended to include 

inter-comparisons with Jason-3 data and updated CryoSat RADS data. 

The quality control and validation tools are currently being upgraded to accommodate the 

upcoming processor upgrades to COP Baseline-C, as described in Bouffard (2016) and 

Bouffard et al. 2017 (this issue). The tools will be adapted to ingest the new L1B and L2 

products in NetCDF format, including the new NOP and GOP and IOP P2P products from the 

ocean processor. In terms of product content the main changes concern the addition of native 

SAR/SARIN data over the relevant regions in the geographical mode mask, and a number of 

new parameters including updated geophysical corrections. These changes are expected to 

further improve the quality of the CryoSat ocean products and further promote their 

application to a broad range of oceanographic and climate studies. 
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C	is	starting	in	November	2017”.	Moreover	Figure	4	has	been	also	updated	by	including	
the	COP	Baseline	C	on	the	scheme.		
	
Page	33,	lines	57,	58	and	page	35,	line	11	-	to	be	consistent	with	the	rest	of	the	paper	use	
"range	and	geophysical	corrections",	as	the	wet	tropospheric	correction	is	a	range	and	not	
a	geophysical	correction.	Range	corrections	are	range	errors	due	to	the	interaction	of	the	
radar	signal	with	the	atmosphere	and	the	sea	surface.	dry,	wet,	iono	and	SSB;	tides	and	
DAC	are	geophysical	corrections,	since	these	do	not	model	errors	in	the	measured	range	
but	rather	refer	to		specific		geophysical	phenomena.	
We	fully	agree	with	this	comment.	Modification	done	
	
Page	34,	line	39	-	"and	do	not	show	any	significant	drift	over	time"	->	suggest	to	add	"and,	
in	spite	of	the	short	analysed	periods,	do	not	show	any	significant	drift	over	time"	
OK.	Modified	accordingly.	
	
	 	



Comments	from	the	editor	
****************************************************************************************	
	
Both	reviewers	were	impressed	with	this	revision;	thank	you	for	taking	such	care	with	this	
version.	
This	has	been	achieved	thanks	to	the	involvement	and	joint	efforts	of	all	co-authors.	We	
are	indeed	convinced	that	this	paper	could	be	a	key	reference	for	the	CryoSat	Ocean	
users.	
		
I	still	have	some	problems	with	a	few	references,	particularly	those	apparent	presentations	
that	may	(or	may	not)	have	been	published.		Here	is	a	list	of	what	I	noted.	
The	reference	list	has	been	carefully	revised,	completed	and	updated	as	necessary.		
	
Andersen,	O.	B.,	and	Knudsen,	P.	(2010).	The	DTU10	mean	sea	surface	and	mean	dynamic	
topography	-	Improvements	in	the	Arctic	and	coastal	zone.	In:	Ocean	Surface	
Topography	Science	Team	Meeting,	October	2010,	Lisbon,	Portugal.	
	
If	this	is	just	a	presentation,	please	say	"presentation	at	..."	
OK	“Presentation	at”	added	when	appropriated	
	
******************************	
Andersen,	O.	B.,	Knudsen	,	P.,	Stenseng,	L.	(2015).	The	DTU13	MSS	(mean	sea	surface)	and	
MDT	(mean	dynamic	topography)	from	20	years	of	satellite	altimetry.	In:	Jin,	S.	and	
Barzaghi	R.	(eds)	IGFS	2014.	International	Association	of	Geodesy	Symposia,	Volume	144,	
Springer	,	111-121,	doi:	10.1007/1345_2015_182	
	
The	publisher's	city	should	be	included.	
OK.	The	publisher’s	city	(“Berlin”)	has	been	added	
	
*****************************	
Bouffard,	J.,	F??m??nias,	P.,	Parrinello	T.	and	Bojkov	B.	(2016).	CryoSat	Mission:	Data	
Quality	Status	and	Next	Product	Evolutions,	4th	CryoSat	User	Workshop,	9-13	May	
2016,	Prague,	Czech	Republic:	ESA.	
	
Again,	is	this	just	a	presentation?			If	so,	please	cite	it	as	a	presentation.	
OK	“Presentation	at”	added	
	
***********************************	
Carr??re	L.,	F.	Lyard,	M.	Cancet,	A.	Guillot,	and	N.	Picot,	(2016).	FES	2014,	a	new	tidal	mode	
-	Validation	results	and	perspectives	for	improvements.	In:	Proceeding	of	the	ESA	Living	
Planet	Conference,	9-13	May	2016,	Prague,	Czech	Republic:	ESA.	
	
This	implies	a	publication.		Please	cite	page	numbers	or	paper	number.		If	only	on	a	CDROM	
please	list	this	also.		If	only	on	the	internet	(and	not	printed),	please	give	the	www	address.	
This	paper	is	an	oral	presentation	of	the	Living	Planet	Symposium.	The	associated	
content	is	however	not	accessible	in	the	proceeding	(CD	ROM,	http://www.spacebooks-
online.com/product_info.php?cPath=104&products_id=17659).	
	
The	FES2014	details	and	access	to	model	outputs	are	accessible	on	
https://datastore.cls.fr/catalogues/fes2014-tide-model/	
This	Web	address	has	been	added	in	section	4.5	of	the	manuscript	and	the	reference	has	
been	changed	into	“Carrère	L.,	F.	Lyard,	M.	Cancet,	A.	Guillot,	and	N.	Picot,	(2016).	FES	
2014,	a	new	tidal	mode	-	Validation	results	and	perspectives	for	improvements.	



Presentation	at	the	ESA	Living	Planet	Conference,	9-13	May	2016,	Prague,	Czech	
Republic.”	
	
******************************	
Cotton,	P.	D.,	Andersen	O.,	Berry,	P.,	Cipollini,	P.,	Gommenginger,	G.,	Martin-Puig,	C.,	
Stenseng,	L.,	Benveniste,	J.,	and	Dinardo,	S.,	(2010).	The	SAMOSA	Project:	Assessing	
the	Potential	Improvements	offered	by	SAR	Altimetry	Over	the	Open	Ocean,	Coastal	
Waters,	Rivers	and	Lakes.	In	Proceeding	of	the	ESA	Living	Planet	Symposium,	28	
June	-	2	July	2010,	Bergen,	Norway:	ESA.	
	
Same	as	the	previous	reference.	
This	publication	has	been	replaced	by	a	more	recent	one,	including	the	www	address	to	
access	to	the	manuscript	(published	in	Proceeding	of	the	ESA	Living	Planet	Symposium,	
CD	ROM,	no	page	number):	
Cotton,	P.	D.,	O.	B.	Andersen,	L.	Stenseng,	F.	Boy,	M.	Cancet,	P.	Cipollini,	C.	
Gommenginger,	S.	Dinardo,	A.	Egido,	M.J.	Fernandes,	P.	Nilo-Garcia,	T.	Moreau,	M.	Naeije,	
R.	Scharroo,	B.	Lucas,		and	Benveniste	J.	(2016).	Improved	Oceanographic	
Measurements	with	CryoSat	SAR	Altimetry:	Results	and	Roadmap	from	ESA	CryoSat	
Plus	for	Oceans	Project.	In	Proceeding	of	the	ESA	Living	Planet	Symposium,	9-13	May	
2016,	Prague,	Czech	Republic,	ESA	Special	Publication	SP-740	(CD-ROM),	2016.	
http://www.satoc.eu/projects/CP4O/docs/0519cotton%20_CP4Oroadmap.pdf		
	
***********************	
Naeije,	M.,	Schrama,	E.,	and	Scharroo,	R.	(2011).	Calibration	and	validation	of	CryoSat-2	
low	resolution	mode	data.	In:	Proceedings	of	the	CryoSat	Validation	Workshop,	1-3,	ESA	
Special	Publications:	ESA/ESRIN,	SP-693.		
	
Do	you	have	page	numbers	or	paper	number?	
Paper	published	in	Proceeding	of	the	CryoSat	Validation	Workshop	(CD	ROM,	no	page	
number).	The	reference	has	been	updated	as	follow:	
	
Naeije,	M.,	Schrama,	E.,	and	Scharroo,	R.	(2011).	Calibration	and	validation	of	CryoSat-2	
low	resolution	mode	data.	In	Proceedings	of	the	CryoSat	Validation	Workshop,	1-3	
February	2011,	ESA	Special	Publication	SP-693	(CD	ROM).	
	
*****************************	
Scharroo,	R.,	E.	Leuliette,	M.	Naeije,	C.	Martin-Puig,	and	N.	Pires	(2016).	RADS	Version	4:	
An	Efficient	Way	to	Analyse	the	Multi-Mission	Altimeter	Database.	In:	Proceedings	of	
the	ESA	Living	Planet	Symposium,	9-13	May	2016,	Prague,	Czech	Republic:	ESA,	
ESA-SP	740,	.428.	
	
I	assume	428	is	a	paper	number	but	is	there	something	missing	between	the	comma	and	
period	(740,			.428)?	
Same	as	previously	(CD	ROM).	The	reference	has	been	updated	as	follow:	
Scharroo,	R.,	E.	Leuliette,	M.	Naeije,	C.	Martin-Puig,	and	N.	Pires	(2016).	RADS	Version	4:	
An	Efficient	Way	to	Analyse	the	Multi-Mission	Altimeter	Database.	In	Proceedings	of	the	
ESA	Living	Planet	Symposium,	9-13	May	2016,	Prague,	Czech	Republic,	ESA	Special	
Publication	SP-740	(CD-ROM).	
	
*****************************	


