43 research outputs found

    Quasiparticles in Quantum Many-Body Systems

    Get PDF
    Topologically ordered phases flamboyance a cornucopia of intriguing phenomena that cannot be perceived in the conventional phases including the most striking property of hosting anyon quasiparticles having fractional charges and fractional statistics. Such phases were discovered with the remarkable experiment of the fractional quantum Hall effect and are drawing a lot of recognition. Realization of these phases on lattice systems and study of the anyon quasiparticles there are important and interesting avenue to research in unraveling new physics, which can not be found in the continuum, and this thesis is an important contribution in that direction. Also such lattice models hosting anyons are particularly important to control the movement of anyons while experimentally implemented with ultra-cold atoms in optical lattices. We construct lattice models by implementing analytical states and parent Hamiltonians on two-dimensional plane hosting non-Abelian anyons, which are proposed candidates for quantum computations. Such lattice models are suitable to create both quasiholes and quasielectrons in the similar way and thereby avoiding the singularity problem for the quasielectrons in continuum. Anyons in these models are found to be well-screened with proper charges and right statistics. Going beyond two dimensions, we unravel the intriguing physics of topologically ordered phases of matter in fractional dimensions such as in the fractal lattices by employing our model constructions of analytical states and parent Hamiltonians there. We find the anyons to be well-screened with right charges and statistics for all dimensions. Our work takes the first step in bridging the gap between two dimensions and one dimension in addressing topological phases which reveal new physics. Our constructions are particularly important in this context since such lattices lack translational symmetry and hence become unsuitable for the fractional Chern insulator implementations. The special features of topologically ordered phases make these difficult to probe and hence the detection of topological quantum phase transitions becomes challenging. The existing probes suffer from shortcomings uo-to a large extent and therefore construction of new type of probes become important and are on high demand. The robustness of anyon properties draw our attention to propose these as detector of topological quantum phase transitions with significant advantages including the facts that these are numerically cheaper probes and are independent of the boundary conditions. We test our probe in three different examples and find that simple properties like anyon charges detect the transitions.Topologisch geordnete Phasen extravagieren ein Füllhorn faszinierender Phänomene, die in den herkömmlichen Phasen nicht wahrgenommen werden können, einschließlich der auffälligsten Eigenschaft, Quasiteilchen mit fraktionierten Ladungen und fraktion- ierten Statistiken aufzunehmen. Solche Phasen wurden mit dem bemerkenswerten Exper- iment des fraktionierten Quanten-Hall-Effekts entdeckt und finden viel Anerkennung. Die Realisierung dieser Phasen auf Gittersystemen und die Untersuchung der Anyon- Quasiteilchen sind wichtige und interessante Wege zur Erforschung der Entschlüsselung neuer Physik, die im Kontinuum nicht zu finden sind, und diese These ist ein wichtiger Beitrag in diese Richtung. Auch solche Gittermodelle, die Anyons enthalten, sind beson- ders wichtig, um die Bewegung von Anyons zu steuern, während sie experimentell mit ultrakalten Atomen in optischen Gittern implementiert werden. Wir konstruieren Gittermodelle, indem wir analytische Zustände und Eltern-Hamiltonianer auf einer zwei- dimensionalen Ebene implementieren, die nicht-abelsche Anyons enthält, die als Kan- didaten für Quantenberechnungen vorgeschlagen werden. Solche Gittermodelle sind geeignet, sowohl Quasi-Löcher als auch Quasielektronen auf ähnliche Weise zu erzeu- gen und dadurch das Singularitätsproblem für die Quasielektronen im Kontinuum zu vermeiden. Jeder in diesen Modellen wird mit angemessenen Gebühren und richtigen Statistiken gut überprüft. Über zwei Dimensionen hinaus enträtseln wir die faszinierende Physik topologisch geordneter Phasen der Materie in fraktionierten Dimensionen wie in den fraktalen Gittern, indem wir dort unsere Modellkonstruktionen von analytischen Zuständen und Eltern-Hamiltonianern verwenden. Wir finden, dass die Anyons mit den richtigen Gebühren und Statistiken für alle Dimensionen gut überprüft werden. Unsere Arbeit macht den ersten Schritt, um die Lücke zwischen zwei Dimensionen und einer Dimension zu schließen und topologische Phasen anzugehen, die neue Physik enthüllen. Unsere Konstruktionen sind in diesem Zusammenhang besonders wichtig, da solche Gitter keine Translationssymmetrie aufweisen und daher für die fraktionierten Chern- Isolatorimplementierungen ungeeignet werden. Die besonderen Merkmale topologisch geordneter Phasen machen es schwierig, diese zu untersuchen, und daher wird die Detek- tion topologischer Quantenphasenübergänge schwierig. Die vorhandenen Sonden leiden in hohem Maße unter Mängeln, weshalb die Konstruktion neuer Sondenarten wichtig wird und eine hohe Nachfrage besteht. Die Robustheit der Anyon-Eigenschaften lenkt unsere Aufmerksamkeit darauf, diese als Detektor für topologische Quantenphasenübergänge mit signifikanten Vorteilen vorzuschlagen, einschließlich der Tatsache, dass dies numerisch billigere Sonden sind und von den Randbedingungen unabhängig sind. Wir testen unsere Sonde in drei verschiedenen Beispielen und stellen fest, dass einfache Eigenschaften wie Ladungen die Übergänge erfassen

    Chain and ladder models with two-body interactions and analytical ground states

    Full text link
    We consider a family of spin-1/2 models with few-body, SU(2) invariant Hamiltonians and analytical ground states related to the 1D Haldane-Shastry wavefunction. The spins are placed on the surface of a cylinder, and the standard 1D Haldane-Shastry model is obtained by placing the spins with equal spacing in a circle around the cylinder. Here, we show that another interesting family of models with two-body exchange interactions is obtained if we instead place the spins along one or two lines parallel to the cylinder axis, giving rise to chain and ladder models, respectively. We can change the scale along the cylinder axis without changing the radius of the cylinder. This gives us a parameter that controls the ratio between the circumference of the cylinder and all other length scales in the system. We use Monte Carlo simulations and analytical investigations to study how this ratio affects the properties of the models. If the ratio is large, we find that the two legs of the ladder decouple into two chains that are in a critical phase with Haldane-Shastry-like properties. If the ratio is small, the wavefunction reduces to a product of singlets. In between, we find that the behavior of the correlations and the Renyi entropy depends on the distance considered. For small distances the behavior is critical, and for long distances the correlations decay exponentially and the entropy shows an area law behavior. The distance up to which there is critical behavior gets larger and larger as the ratio increases.Comment: 19 pages, 16 figure

    Generalized Triple-Component Fermions: Lattice Model, Fermi arcs, and Anomalous Transport

    Full text link
    We generalize the construction of time-reversal symmetry-breaking triple-component semimetals, transforming under the pseudospin-1 representation, to arbitrary (anti-)monopole charge 2n2 n, with n=1,2,3n=1,2,3 in the crystalline environment. The quasiparticle spectra of such systems are composed of two dispersing bands with pseudospin projections ms=±1m_s=\pm 1 and energy dispersions Ek=±αn2k2n+vz2kz2E_{\bf k}=\pm \sqrt{ \alpha^2_n k^{2n}_\perp +v^2_z k^2_z}, where k=kx2+ky2k_\perp=\sqrt{k^2_x+k^2_y}, and one completely flat band at zero energy with ms=0m_s=0. We construct simple tight-binding models for such spin-1 excitations on a cubic lattice and address the symmetries of the generalized triple-component Hamiltonian. In accordance to the bulk-boundary correspondence, triple-component semimetals support 2n2 n branches of topological Fermi arc surface states and also accommodate a \emph{large} anomalous Hall conductivity (in the xyxy plane), given by σxy3D2n×\sigma^{\rm 3D}_{xy} \propto 2 n \times the separation of the triple-component nodes (in units of e2/he^2/h). Furthermore, we compute the longitudinal magnetoconductivity, planar Hall conductivity, and magneto thermal conductivity in these systems, which increase as B2B^2 for sufficiently weak magnetic fields (BB) due to the nontrivial Berry curvature in the medium. A generalization of our construction to arbitrary integer spin systems is also highlighted.Comment: 18 Pages, 8 Figures: Published version in Phys. Rev.

    Shot noise classification of different conductance plateaus in a quantum point contact at the ν=2/3\nu=2/3 edge

    Full text link
    The ν=2/3\nu = 2/3 filling is the simplest paradigmatic example of a fractional quantum Hall state, which contains counter-propagating edge modes. These modes can be either in the coherent or equilibrated to different extents, on top of the possible edge reconstruction. In the coherent regime, two distinct renormalization group fixed points have been previously proposed, namely Kane-Fischer-Polchinski and Wang-Meir-Gefen. In the equilibration regime, different degree of thermal equilibration can exist, while charge is fully equilibrated. Here, we show that these rich variety of models can give rise to three possible conductance plateaus at e2/2he^2/2h (recently observed in experiments), 5e2/9h5e^2/9h (we predict), and e2/3he^2/3h (observed earlier in experiments) in a quantum point contact geometry. We identify different mechanisms for \emph{electrical shot noise} generation at these plateaus, which provides an experimentally accessible venue for distinguishing among the distinct models.Comment: 12 pages, 6 figure
    corecore