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Abstract

„The most exciting phrase to hear in science, the
one that heralds new discoveries, is not ’Eureka!’
but ’That’s funny...’

— Isaac Asimov

Topologically ordered phases flamboyance a cornucopia of intriguing phenomena that
cannot be perceived in the conventional phases including the most striking property of
hosting anyon quasiparticles having fractional charges and fractional statistics. Such
phases were discovered with the remarkable experiment of the fractional quantum Hall
effect and are drawing a lot of recognition.

Realization of these phases on lattice systems and study of the anyon quasiparticles
there are important and interesting avenue to research in unraveling new physics, which
can not be found in the continuum, and this thesis is an important contribution in that
direction. Also such lattice models hosting anyons are particularly important to control
the movement of anyons while experimentally implemented with ultra-cold atoms in
optical lattices. We construct lattice models by implementing analytical states and parent
Hamiltonians on two-dimensional plane hosting non-Abelian anyons, which are proposed
candidates for quantum computations. Such lattice models are suitable to create both
quasiholes and quasielectrons in the similar way and thereby avoiding the singularity
problem for the quasielectrons in continuum. Anyons in these models are found to be
well-screened with proper charges and right statistics. Going beyond two dimensions,
we unravel the intriguing physics of topologically ordered phases of matter in fractional
dimensions such as in the fractal lattices by employing our model constructions of
analytical states and parent Hamiltonians there. We find the anyons to be well-screened
with right charges and statistics for all dimensions. Our work takes the first step in bridging
the gap between two dimensions and one dimension in addressing topological phases
which reveal new physics. Our constructions are particularly important in this context
since such lattices lack translational symmetry and hence become unsuitable for the
fractional Chern insulator implementations. The special features of topologically ordered
phases make these difficult to probe and hence the detection of topological quantum phase
transitions becomes challenging. The existing probes suffer from shortcomings uo-to
a large extent and therefore construction of new type of probes become important and
are on high demand. The robustness of anyon properties draw our attention to propose
these as detector of topological quantum phase transitions with significant advantages
including the facts that these are numerically cheaper probes and are independent of the
boundary conditions. We test our probe in three different examples and find that simple
properties like anyon charges detect the transitions.
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Zusammenfassung

„When you change the way you look at things, the
things you look at change.

— Max Planck

Topologisch geordnete Phasen extravagieren ein Füllhorn faszinierender Phänomene,
die in den herkömmlichen Phasen nicht wahrgenommen werden können, einschließlich
der auffälligsten Eigenschaft, Quasiteilchen mit fraktionierten Ladungen und fraktion-
ierten Statistiken aufzunehmen. Solche Phasen wurden mit dem bemerkenswerten Exper-
iment des fraktionierten Quanten-Hall-Effekts entdeckt und finden viel Anerkennung.

Die Realisierung dieser Phasen auf Gittersystemen und die Untersuchung der Anyon-
Quasiteilchen sind wichtige und interessante Wege zur Erforschung der Entschlüsselung
neuer Physik, die im Kontinuum nicht zu finden sind, und diese These ist ein wichtiger
Beitrag in diese Richtung. Auch solche Gittermodelle, die Anyons enthalten, sind beson-
ders wichtig, um die Bewegung von Anyons zu steuern, während sie experimentell
mit ultrakalten Atomen in optischen Gittern implementiert werden. Wir konstruieren
Gittermodelle, indem wir analytische Zustände und Eltern-Hamiltonianer auf einer zwei-
dimensionalen Ebene implementieren, die nicht-abelsche Anyons enthält, die als Kan-
didaten für Quantenberechnungen vorgeschlagen werden. Solche Gittermodelle sind
geeignet, sowohl Quasi-Löcher als auch Quasielektronen auf ähnliche Weise zu erzeu-
gen und dadurch das Singularitätsproblem für die Quasielektronen im Kontinuum zu
vermeiden. Jeder in diesen Modellen wird mit angemessenen Gebühren und richtigen
Statistiken gut überprüft. Über zwei Dimensionen hinaus enträtseln wir die faszinierende
Physik topologisch geordneter Phasen der Materie in fraktionierten Dimensionen wie
in den fraktalen Gittern, indem wir dort unsere Modellkonstruktionen von analytischen
Zuständen und Eltern-Hamiltonianern verwenden. Wir finden, dass die Anyons mit den
richtigen Gebühren und Statistiken für alle Dimensionen gut überprüft werden. Unsere
Arbeit macht den ersten Schritt, um die Lücke zwischen zwei Dimensionen und einer
Dimension zu schließen und topologische Phasen anzugehen, die neue Physik enthüllen.
Unsere Konstruktionen sind in diesem Zusammenhang besonders wichtig, da solche
Gitter keine Translationssymmetrie aufweisen und daher für die fraktionierten Chern-
Isolatorimplementierungen ungeeignet werden. Die besonderen Merkmale topologisch
geordneter Phasen machen es schwierig, diese zu untersuchen, und daher wird die Detek-
tion topologischer Quantenphasenübergänge schwierig. Die vorhandenen Sonden leiden
in hohem Maße unter Mängeln, weshalb die Konstruktion neuer Sondenarten wichtig wird
und eine hohe Nachfrage besteht. Die Robustheit der Anyon-Eigenschaften lenkt unsere
Aufmerksamkeit darauf, diese als Detektor für topologische Quantenphasenübergänge mit
signifikanten Vorteilen vorzuschlagen, einschließlich der Tatsache, dass dies numerisch
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billigere Sonden sind und von den Randbedingungen unabhängig sind. Wir testen unsere
Sonde in drei verschiedenen Beispielen und stellen fest, dass einfache Eigenschaften wie
Ladungen die Übergänge erfassen.
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Introduction
1

„Imagination is more important than knowledge.
Knowledge is limited. Imagination encircles the
world.

— Albert Einstein

Topologically ordered phases of matter [252, 251] are of immense importance, since
these go beyond the description of local order parameters in conventional phases, from
both fundamental theoretical slants and experimental point of view and thereby have
stood up as an active research area both in theoretical grounds and in practical appli-
cations. An exotic feature of these phases is the ability to host peculiar quasiparticles,
which are known as anyons exhibiting fractional charges and fractional statistics [141,
255], which are proposed potential ingredients for the fault-tolerant topological quantum
computations [165, 200]. Fractional quantum Hall effect is very special in this context
since it is the first experimentally realized topologically ordered phase that can host such
exotic quasiparticles. However investigation of these phases and manipulation of such
quasiparticles remain a challenge, since large resources are needed for the numerical
computations in tackling the large Hilbert space sizes of strongly interacting quantum
many-body systems. This thesis is devoted to study such quasiparticles in topologically
ordered phases in lattice systems using both analytical tools and numerical techniques.

1.1 Motivations

New phases of matter emerged a few decades ago with the remarkable experimental
discovery of the fractional quantum Hall effect phenomenon in two-dimensional electron
gas under magnetic field. Such phases host low-energy anyon quasiparticles carrying
fractional charges and fractional statistics. To describe such phases and their quasiparti-
cles in the continuum, many-body ansatz states were proposed by physicists including
Laughlin, Moore and Read, Halperin, Read and Rezayi. Later Jain proposed another
theory based on the composite fermion picture to describe the similar physics. However
continuum systems gave rise to shortcomings including the ill-defined negatively charged
anyonic fractional quantum Hall states and the requirement of large physical magnetic
field. Therefore realization of the similar physics in two-dimensional lattices became
particularly important to reveal new physics where the first step was taken by Kalmeyer
and Laughlin to construct the trial fractional quantum Hall like state and by Haldane to
construct the Chern insulator models, where physical magnetic field was cleverly skipped.
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Later such constructions were extended to describe other fractional quantum Hall states
hosting Abelian anyons and to construct different fractional Chern insulator models.

The journey of this thesis commence by addressing the important cutting-edge open
questions in this field after the progress as briefly outlined above. Previous studies on
the lattice fractional quantum Hall models hosting Abelian anyons provided the hint to
construct the more challenging and more important lattice models hosting non-Abelian
anyons, which are potential ingredients for quantum computations. Such lattice models
turn out to be suitable to create both positively charged and negatively charged anyons on
equal footing and thereby revealing new physics which we did not find in the continuum.
Also such non-Abelian lattice models carrying anyons are important to get control over
anyons if these could be experimentally implemented with ultra-cold atoms in optical
lattices. Having understood the construction of topologically ordered models and the
behavior of anyons in two-dimensional lattices we uncover the intriguing physics of
topological phases of matter in fractional dimensions such as in the fractal lattices.
Thereby we bridge the gap between two dimensions and one dimension by placing our
model constructions on fractal lattices which reveal new physics. Our constructions
are particularly relevant in this context since such lattices lack translational symmetry
and hence become unsuitable for the fractional Chern insulator constructions. Now we
have the methodology to construct anyons and to study those in different systems. Our
investigations show the robustness of the properties of anyons which draw our attention
to propose those as the detector of topological quantum phase transitions with significant
advantages. Our findings overcome the shortcomings of the existing probes up-to a large
extent and become important to set up the bigger picture of using quasiparticles, which
may not be anyonic, as detector of quantum phase transitions in other systems like in
frustrated quantum magnets.

1.2 Thesis structure : purposes and findings
In this thesis, we research quasiparticles in strongly correlated quantum many-body
systems described on lattices with an emphasis on the topologically ordered phases of
matter which includes the lattice fractional quantum Hall models, the fractional Chern
insulator models, and the Z2 quantum spin liquid phases. A chapter-wise guide in nutshell
of the thesis, after providing the short background on the relevant topics in Chapter-2, is
structured as follows.

1.2.1 Chapter 3 : Construction of the anyonic lattice
fractional quantum Hall states

Fractional quantum Hall effect is very important phenomenon since this is the first
ever experimentally demonstrated topological phases of matter. The fractional quantum
Hall states in continuum have been explored earlier in the literature, where the major
shortcoming is the fact that the states with quasiholes are well-behaved but the states
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containing quasielectrons give rise to the singularity and thereby result in complicated
states. Translating fractional quantum Hall states in lattices come up with new avenues and
reveal new physics including the scenario that the singularity problem, as appeared in the
continuum systems, with the quasielectrons does not appear in the lattice systems and the
quasielectron states are similar to those of the quasihole state. Also the analytical forms of
the states are suitable to study the topological properties, such as the entanglement entropy,
of the systems and the anyon properties for large system sizes by using Monte-Carlo
simulations. The purposes of this chapter is to construct the lattice fractional quantum
Hall states containing anyons by using the representation of the infinite-dimensional
matrix product states as the correlators of the fields of the underlying conformal field
theory.

We commence by deriving the correlators of primary fields of the free, massless bosons
of the underlying conformal field theory, which correspond to the description of the
fractional quantum Hall states in Sec. 3.1. We point out the singularity problem of
the quasielectron states in continuum fractional quantum Hall effect in Sec. 3.2. We
construct the lattice fractional quantum Hall states containing anyons, as the conformal
field correlators acting on the lattice sites and on the anyon positions, in Sec. 3.3 where
we explicitly derive the lattice Laughlin states and the lattice Moore-Read states on the
plane.

1.2.2 Chapter 4 : Investigations of non-Abelian anyons in
lattice Moore-Read models
Anyons are important blessings of topologically ordered phases of matter since these
are neither fermions nor bosons, rather carry fractional charges and fractional statis-
tics. Study of non-Abelian anyons are particularly important for topological quantum
computations. Anyons have been investigated in earlier studies in continuum systems,
where the quasiholes are easier to describe than the quasielectrons. Realizing anyons
in lattice systems become important to uncover new physics and to get more control
over these. In this prospect recently Abelian anyons in the lattice Laughlin states have
been investigated. The purposes of this chapter is to research more difficult scenario as
the non-Abelian anyons in the lattice Moore-Read fractional quantum Hall models. We
also derive the parent Hamiltonians for which the lattice Moore-Read states, containing
anyons as provided in Chapter-3, are the ground states.

We investigate density profiles, shapes, excess charge distributions and compute charges
of the non-Abelian Ising anyons in the lattice Moore-Read states at the Landau level
filling factor 5/2 in Sec. 4.1 by using Monte-Carlo technique. Thereby we show that the
quasielectrons can be created in a similar way that of the quasiholes. We find that the
anyons are screened well with radii of a few lattice constants and approach charges' 0.25
for the quasiholes and charges '−0.25 for the quasielectrons. We research fractional
braiding statistics of the anyons in Sec. 4.2 and show that the anyons are non-Abelian
and find that the braiding statistics are the same as expected from the continuum. In Sec.
4.3 we derive the parent Hamiltonians for which the lattice Moore-Read states are the
exact ground states. We find that the parent Hamiltonians are long-range and contain
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few-body interactions which may be a starting point to search for the local Hamiltonians
with practically the same ground state physics.

We create non-Abelian anyons in the Kapit-Mueller model, which is simpler and
experimentally relevant and which shows an exact equivalence between a realistic lattice
system and the lowest Landau level of the fractional quantum Hall effect, in Sec. 4.4 and
show that the quasielectrons can be created in the same fashion as that of the quasiholes.
By using exact diagonalizations we find that the anyons in this model are well-screened
and have right charges. We find that anyons in the lattice Moore-Read states and anyons
in the Kapit-Mueller model display similar density profiles and similar shapes, which
make our analytical states to be relevant for this simpler model.

1.2.3 Chapter 5 : Exploring anyons and topological order in
quasicrystals and in fractal spaces

Quasicrystals provide a wealth of intigruing phenomena due to long-range order and non-
periodic structure of atoms. Such constructions are also motivated by the experimental
progress in discovering the eight-fold rotationally symmetric optical lattice, realizing a
two-dimensional quasicrystalline potential [239] for ultra-cold atoms. Fractal lattices
give rise to the possibilities in exploring interesting physics in non-integer dimensions,
known as the fractal dimensions or the Hausdorff dimensions such as between 0 and
2, which act as the bridge to reveal new phenomenon between integer dimensions. In
this prospect recently non-interacting topological phases of matter in fractal spaces have
been investigated. The purposes of this chapter is to take the first step to address strongly
interacting topologically ordered phases such as anyons and the fractional quantum Hall
physics in quasicrystals and in fractal spaces. We emphasis on an important common
point for the investigations in quasicrystals and in fractal lattices is that we can use our
construction to obtain anyons and fractional quantum Hall physics to directly probe the
topological order on lattices, where one can not easily construct a topological flat band
due to the lack of translational symmetry.

We start by introducing quasicrystals and fractal lattices with fractal dimensions, with a
particular example as the Sierpinski gasket, in Sec. 5.2. We focus on the anyonic Laughlin
states and we show in Sec. 5.3 the existence of well-screened anyons in two types of
quasicrystals and in fractal lattices with fractal dimension ' 1.585 on the Sierpinski
gasket fractal geometry. On the contrary of the well-known fact that anyons do not exist
in one-dimensional linear system, since the model is critical, we find that anyons can
exist in one dimension on fractal space. Also we show that anyons exist in dimension
less than one such as in dimension ln(4)/ ln(5)' 0.86. We conclude that anyons and the
fractional quantum Hall physics can be obtained in all dimensions 1≤ dimension≤ 2 and
the shape of the fractal is important for this purpose. Our findings reveal that the lattice
points distributions are more important in hosting anyons and the fractional quantum
Hall physics rather than the Hausdorff dimensions of the fractal spaces. By computing
braiding statistics of anyons in Sec. 5.4, we show that the systems have right topological
order. In Sec. 5.5 we construct parent Hamiltonians of our lattice models.
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1.2.4 Chapter 6 : Anyonic quasiparticles from the systems of
hardcore anyons

So far the fractional quantum Hall systems of bosons or fermions are known to host anyon
quasiparticles. This gives rise to an interesting question about the possibility of model
systems where the original particles are anyonic. The purposes of this chapter is to show
that the lattice fractional quantum Hall systems consisting of hardcore anyons can give
rise to their own anyonic quasiparticles. These studies give rise to the new type of lattice
fractional quantum Hall models.

In Sec. 6.1 we introduce the Laughlin type states of hardcore anyons containing anyonic
quasiparticles. We study density profiles and charges of the emergent anyons is Sec. 6.2
which show that the anyonic quasiparticles are well-screened and exhibit right charges.
In Sec. 6.3 we compute braiding statistics of the anyonic quasiparticles and show that it is
different from the statistics of the elementary anyons which constitute the systems.

1.2.5 Chapter 7 : Quasiparticles as detector of topological
quantum phase transitions

Topological phases of matter, and hence the topological quantum phase transitions, breaks
the notion of local order parameters and therefore demand for new kind of probes to detect.
A few probes, including gound state degeneracy, topological entanglement entropy, many-
body Chern number, spectral flow, and the entanglement spectrum have been developed
earlier to detect the topological quantum phase transitions but these are numerically
expensive and often depend on the specific boundary conditions. Therefore the existing
probes suffer from shortcomings up-to a large extent and the shortage of suitable detectors
of topological quantum phase transition become prominent. The purposes of this chapter
is to demonstrate that the quasiparticles can be used as a powerful and a numerically
cheaper tool to detect the topological quantum phase transitions. We support our claim
by testing the method on five concrete examples. In all the cases we trap anyons in
the ground states of the systems. We look at the simple properties of anyons like the
anyon charges and we change the parameter, which drives the system from topological to
non-topological phase, and thereby we detect different phases.

In Sec. 7.1 we consider a lattice Moore-Read state on a square lattice and in Sec. 7.2
on a fractal lattice, which undergoes a topological quantum phase transition as a function
of the lattice filling factor as shown in earlier studies. We show that the anyon charges
detect the topological quantum phase transition. In Sec. 7.3, we investigate an interacting
Hofstadter model in the absence of disorder, which has a Laughlin type ground state,
and which undergoes a topological quantum phase transition as a function of the lattice
filling factor as found in earlier investigations. We consider this model in the presence
of disorder in Sec. 7.4. We find that the anyon charges detect the topological quantum
phase transition. In Sec. 7.5, we study the Kitaev’s toric code model, which undergoes a
topological quantum phase transition when a sufficiently strong external magnetic field
is applied. We create anyons in the ground state and show that the anyons dictate the
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topological quantum phase transition. In all these examples we find that it is sufficient
to compute the anyon charges to determine the phase transition point and therefore the
method is numerically cheap.

1.2.6 Chapter 8 : Constructions and investigations of the
spin-1/2 chain and ladder models
Exactly solvable quantum many-body systems are important due to their own right.
The spin-1/2 one-dimensional Haldane-Shastry model is one of the examples among
them. Here we consider a family of spin-1/2 models with few-body, SU(2) invariant
Hamiltonians and analytical ground states related to the one-dimensional Haldane-Shastry
wavefunction. The spins are placed on the surface of a cylinder, and the standard one-
dimensional Haldane-Shastry model is obtained by placing the spins with equal spacing in
a circle around the cylinder. The purpose of this chapter is to show that another interesting
family of models with two-body exchange interactions is obtained if we instead place the
spins along one or two lines parallel to the cylinder axis, giving rise to chain and ladder
models, respectively.

We briefly recall the two-dimensional Haldane-Shastry model for spins on an arbitrary
lattice on the cylinder in Sec. 8.1. We discuss the one-dimensional Haldane-Shastry model
on the circle in Sec. 8.2. We show that the two-dimensional Haldane-Shastry model
reduces to a two-body model for particular choices of the lattice in Sec. 8.3. Special
cases include spin chain models, which we analyze in Sec. 8.4, and ladder models, which
we analyze in Sec. 8.5. We find that depending on the length scales the models show
critical behavior, with power-law decaying correlations and logarithmic law maintaining
Renyi entanglement entropy, in one limit and show product of singlets behavior, with
exponentially decaying correlations and area law maintaining Renyi entanglement entropy,
in another limit. In between more complicated behaviors are found.
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Topology, Fractional
Quantum Hall Effect and
Anyons

2

„Living is worthwhile if one can contribute in some
small way to this endless chain of progress.

— Paul Dirac

2.1 Topological phases of matter
Physicists’ understanding of the quantum phases has undergone major revolutions precip-
itated by experimental discoveries and by profound theoretical revelations. Landmarks
include the Landau-Ginzburg-Wilson theory which describes the second order quantum
phase transitions [198] among conventional phases in terms of symmetry breaking. This
theory characterizes phase transitions by defining local order parameters which vanish in
one phase and acquire non-zero values in the other phase and thereby break symmetry.
This concept is known as the spontaneous symmetry breaking. For example ferromagnet
to paramagnet transition at zero temperature where total magnetization plays the role of
local order parameter.

However not all phases can be fully characterized by symmetries and therefore not all
quantum phase transitions can be described by local order parameters. Some quantum
systems, for example the fractional quantum Hall phase, do not admit symmetry breaking
local order parameters and therefore go beyond the painting of Landau’s theory. These
systems are characterized by global properties such as topology of the system and
hence display a new kind of order that goes beyond the conventional classification
of phases of matter. This new type of order is called as the topological order [112,
176, 251] which cannot be transformed into a conventional product state through a
local unitary transformation. Topologically ordered phases are short-range correlated,
where correlation function decays exponentially, and possess long-range entanglement.
The entanglement entropy follows the area-law behavior with the sub-system size and
displays a finite sub-leading correction in the scaling which is known as the topological
entanglement entropy [142, 127, 112]. Such kind of system exhibits an energy gap above
the ground state and is associated with a ground state degeneracy [79, 217] that depends
on the topology of the space, such as genus of the torus, on which the system is defined.
The energy gap and the ground state degeneracy are not protected by symmetry and can
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Figure 2.1.: Topologically ordered phases show an energy gap to the excited states and exhibit
degeneracy in the ground state spectrum while defined on the non-trivial surfaces
such as on the torus. These phases are described by the exponentially decaying
short-range correlations and by the area-law obeying long-range entanglement with
a finite sub-leading correction term known as the topological entanglement entropy.
Existence of the anyonic quasiparticle excitations, above the ground state and carry-
ing fractional charges and fractional statistics, are one of the signature properties of
the topologically ordered phases of matter.

not be lifted by any local perturbation. Therefore such phases are robust to noise and
become suitable for storing quantum informations. The quasiparticle excitations above the
ground state are neither fermions nor bosons and show fractional charges and fractional
statistics [10, 178, 164]. These quasiparticles are potential candidates for performing
fault-tolerant topological quantum computations [218, 50, 159, 200, 30, 121, 43, 138,
208, 124]. We display a pictorial sketch of the topologically ordered phases of matter
in Fig. 2.1. In searching for the topologically ordered states, fractional quantum Hall
phenomena [225, 130] is a prominent example which is described by the chiral spin liquid
ground states [140] and breaks the time reversal symmetry.

Apart from the chiral spin liquid states, there are Z2 topologically ordered states [186].
An exactly solvable model of such order was developed by Alexei Kitaev, which is
known as the Kitaev’s toric code model [126]. Also frustrated quantum magnet models
[184, 40, 276, 232, 204, 104, 147, 39, 277, 229, 243, 19, 230, 245, 74, 122, 213, 52,
15] are potential candidates to realize quantum spin liquid phases [202] and sometimes
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they exhibit Z2 topologically ordered gapped quantum spin liquid states as the ground
states. Examples include the spin-1/2 Heisenberg model on the Kagome lattice [91,
92], and the spin-1/2 Heisenberg J1-J2 model on square lattice [73, 113, 242, 38] etc.
Recently, experimentally discovered layered magnet Herbertsmithite, having the chemical
composition as ZnCu3(OH)6Cl2, becomes the potential candidate for the theoretical
model of the Heisenberg interaction on the Kagome lattice and for realizing quantum spin
liquid phases. Also the rare-earth pyrochlore magnets in three-dimensions are drawing a
lot of recognition in realizing quantum spin liquid phases [105, 7, 207, 272].

Along with the topologically ordered phases, there exist symmetry protected topological
phases which are not-long range entangled but show topological properties. Topological
behavior of such systems are protected by symmetry. Examples include the quantum spin
Hall systems [97, 100, 117, 118, 12, 27] and topological insulators [26, 9, 88] in which
topological properties are protected by the time-reversal symmetry.

2.2 The fractional quantum Hall effect

  

B⃗
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localized states

extended states

Figure 2.2.: Left upper figure : Experimental demonstration of the Hall effect and the transport
measurements are shown where the electron gas is confined in a two-dimensional
plane. A current jx is driven in the x-direction and an external magnetic field ~B
is applied in the z-direction. The longitudinal resistivity ρxx is measured in the
x-direction and the Hall resistivity ρxy is measured in the y-direction. Left lower
figure : Pictorially we show the effect of impurities of the sample on the density of
states, which is known as the Landau levels. The impurities make the states which
are close to the center of the band to be extended and make the states which are at
the far edge of the band to be localized. Right figure : Experimental data of ρxy and
of ρxx as a function of B are shown (Picture Courtesy - Wikipedia).
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Over the past three decades, one of the most important playgrounds in revealing topo-
logical order becomes the fractional quantum Hall physics which is important both from
fundamental viewpoint as well as for their potential applications in quantum information
processing. The importance of this phenomenon lies in the fact that it has been realized
experimentally. The nomenclature comes from the classical Hall effect [224], which
is the generation of a transverse voltage VH , known as the Hall voltage, in conductors
placed in crossed electric and magnetic fields. It was discovered by Edwin Hall in 1879.
This voltage, which arises from the accumulation of charges due to the bending of paths
of the charge carriers from the magnetic field, can be used to define a transverse elec-
trical conductivity σxy which is written to be the ratio of the applied current to the Hall
voltage.

Just after the hundredth anniversary of the Edwin Hall’s discovery, the discovery of the
integer quantum Hall effect [130] by Klaus von Klitzing et al. in 1980 and the disclosure
of the fractional quantum Hall effect [225, 258] by Tsui-Stormer-Gossard in 1982 paved
the path for one of the most important developments in topological phases of matter. The
quantum Hall phases take place when a two-dimensional electron gas is subjected to
a perpendicular high magnetic field at low temperature and thereby Landau levels are
formed. Low temperature is needed to ensure the physics to come from the quantum
fluctuations. And the thermal energy KT must be very less than the gap between the
Landau levels, where K is the Boltzmann constant and T is the temperature. The magnetic
field breaks the time-reversal and the parity symmetry, and the ground state is known
as the chiral topological state and is associated with the chiral edge states which have
preferred directions along the edges of the sample. The term "chiral" corresponds to the
time-reversal symmetry breaking scenario. Experimentally the electrons are confined
at the interface of two semiconductors. As displayed in Fig. 2.2 (left upper), the key
experimental signature of the quantum Hall effect is the behavior of the transverse Hall
resistivity ρxy and the longitudinal Hall resistivity ρxx as a function of the perpendicular
magnetic field B. The quantities ρxy and ρxx are computed in transport measurements and
we show the data for ρxy as a function of B for the fractional quantum Hall effect in Fig.
2.2 (right). The quantum Hall effect is characterized by the formation of plateaus, where
ρxx vanishes and ρxy is constant which takes the values [224]

ρxy =
1
ν

h
e2 , and σxy =

1
ρxy

, (2.1)

where h is the Planck’s constant, e is the electron charge, and ν is a rational number
which is known to be the Landau level filling fraction of the quantum Hall state. The
quantity ν corresponds to the number of particles per magnetic flux in the system.

In the integer quantum Hall effect [194, 224], the Landau levels are fully filled which
correspond to ν to be integers. This phenomena can be understood by considering the
single-particle picture. And the development of plateaus, in ρxy for a range of B, can be
explained by considering the effect of impurities. Impurities turn many of the quantum
states from extended to localized. In general the extended states are spread throughout
the whole system while the localized states are restricted to lie in some region of space.
The effect of impurities lead to the fact that the states which are close to the center of
the band become extended and the states which are at the far edge of the band will be
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localized [224]. We show this schematically in Fig. 2.2 (left lower). It is to be noted that
only the extended states take part in the transport and therefore the localized states do
not contribute to the conductivity. Now if the Fermi energy lies in the gap between two
Landau levels, which in turn corresponds to the scenario of the fully filled Landau levels,
then there exists no state close to the Fermi energy and thereby the system becomes
gapped. In that case all the extended states in a given Landau level are filled. Now if
we increase the magnetic field, it will change the Fermi energy. But before jumping to
the next Landau level, the localized states will be populated. This corresponds to the
conductivity to be unchanged, which leads to the observation of having plateaus.

When B is high then the magnetic length lB ∝ 1/
√

B becomes small and therefore the
particles come closer which corresponds to the interaction to be stronger. The single-
particle picture breaks down for the fractional quantum Hall effect and the Landau levels
are partially filled. Hence the interactions among the particles are the key ingredients
for the fractional quantum Hall effect which are incompressible and gapped phases
of matter. Strong particle-particle interactions invalidate the perturbative treatment
and make the investigations of the fractional quantum Hall effect challenging [25].
Remarkably a breakthrough happened by the Laughlin’s ansatz [140] for the trial states
in the theoretical description of the fractional quantum Hall effect. The Laughlin states
provide paradigmatic model states which give the effective descriptions of the complex
strongly interacting physical phenomenon by cleverly skipping a direct microscopic
solution of the quantum many-body problem. The Laughlin states describe the fractional
quantum Hall phases with the lowest Landau level filling fraction ν = 1/q, where q ∈
{1,3,5, ...}. It is to be noted that q = 1 Laughlin state recovers the Slater determinant for
the single electron case. It was shown that the trial states exhibit excitations, which are
neither fermions nor bosons, with fractional charges and fractional statistics.

Laughlin states were later generalized to the states of other filling fractions with
odd denominators through a hierarchy construction, which were recognized to be the
composite fermion theory of the fractional quantum Hall effect as coined by J. K. Jain
[106]. This theory sells the fractional quantum Hall states as the integer quantum Hall
states of composite fermions [16, 84, 85, 111, 109, 259, 221, 220], which are described to
be the bound states of electrons and magnetic fluxes. Later further generalizations of the
Laughlin states were done to describe the physics of the higher Landau levels. Examples
include the Moore-Read state [162, 191, 69, 275, 17, 157, 156, 93, 49] and Read-Rezayi
state [192, 160] at the Landau level fillings factors 5/2 and 12/5 respectively, which
correspond to the physics of the second Landau level at filling fractions 1/2 and 2/5
respectively.

The theoretical support of the experimentally observed fractional quantum Hall effect
has been provided by constructing ansatz states. Craze to realize the similar physics
in lattices [131] has the motivation for experiments with ultra-cold atoms in optical
lattices. Lattice systems can reveal new behavior which can not be perceived in the
continuum. Also manipulation of the quasiparticles in fractional quantum Hall states
remain a challenge. Finding other systems exhibiting the same physics is an important
step towards a better understanding of these phenomena as well as towards the practical
applications in quantum computing. Also realizing fractional quantum Hall physics
in ultra-cold atoms would open up new possibilities for doing measurements on the
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systems. Kalmeyer and Laughlin stepped first in this direction where they proposed a
lattice version of the continuum Laughlin state for q = 2 and thereby corresponds to the
bosonic fractional quantum Hall phase [115]. This can be characterized as the chiral
spin liquids where the term "spin liquid", as first coined by Phil Anderson, refers to the
strongly correlated low temperature phase having no magnetic order [6].

Lattice models displaying the integer quantum Hall physics, known to be the Chern
insulator models, were first constructed by Duncan Haldane, where the time reversal
symmetry is not broken through an external magnetic field, rather is broken by the
presence of complex phases in the hopping terms of the Hamiltonian [81]. Later this
concept was generalized to the interacting models which are known to be the fractional
Chern insulator models [76, 163, 193]. Usually two approaches draw a lot of interests in
constructing the lattice models. The first approach deals with the construction of the non-
interacting Chern insulator models [271, 22, 108, 216, 246, 247, 214]. And interactions
become important to have fractional filling factor for the flat band which mimic the lowest
Landau level. This approach gives rise to different fractional Chern insulator models [79,
210, 260, 149, 148, 47, 166] having flat bands. In the second approach, one mimics the
interaction of the fractional quantum Hall systems in the continuum and translate the
states on the lattices [256, 175, 197, 69, 169, 227, 173, 170, 157, 156].

Lattice models show the avenue to realize the fractional quantum Hall physics even
in the room temperature. We explain this possibility as follows. We require low enough
temperature to get the physics from quantum fluctuations. Now the thermal energy is
proportional to the temperature and the gap between the Landau levels is proportional to
the square root of the magnetic field. Therefore we need very low temperature and high
magnetic field to keep the thermal energy small enough compared to the gap. To realize
the fractional quantum Hall physics we require strong interactions among the particles
which in turn requires high magnetic field since the length scale between two particles
becomes smaller when we have higher magnetic field. In continuum systems, like in
the two-dimensional electron gas, the fractional quantum Hall physics is obtained by
applying the external magnetic field, which has the limitation up to a few Tesla. In lattice
systems, we have the possibility of generating artificial magnetic fields or artificial gauge
fields, which are larger than the external magnetic field. Therefore it is possible to satisfy
the condition of having the thermal energy small enough compared to the gap in moderate
temperature, such as in the room temperature. Hence if one finds a material with the right
combination of properties, one may be able to realize the fractional quantum Hall physics
at room temperature.

Lattice models are often suitable to be realized in experiments with ultra-cold atoms
[29, 72] in optical lattices, where interactions can be engineered. The experimental
realization of the Hofstadter model [95], which corresponds to the integer quantum Hall
physics, with ultra-cold atoms [4, 158] is an example in that direction. Proposals to
realize fractional quantum Hall physics with ultra-cold atoms are discussed in different
literature [79, 210, 45, 265].
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2.3 Anyons

  

ri r j x

y

time

e
2iθ∣Ψ(ri , r j)〉

e
i θ∣Ψ(ri , r j)〉

∣Ψ(ri , r j) 〉

ri

r j

Figure 2.3.: Pictorial representation of the anyon braiding and the fractional statistics are shown.
In the left figure we display the blue blob and the red blob as anyons and the yellow
circles as particles. One anyon at position r j is braiding around another anyon at
position ri in the two-dimensional plane. In the right figure we show the different time
slices for the anyon movement of the left figure. When the anyons are exchanged, the
many-body state |Ψ(ri,r j)� acquires a phase eiθ �=±1 and when one anyon braids
around another anyon the phase factor becomes e2iθ �= 1.

Quantum statistics provides the pillar of quantum mechanical viewpoint of the world.
Our three-dimensional world, that is 3+1-dimensional world, consists of the two types
of elementary particles which are classified into bosons and fermions as distinguished by
their quantum statistics. The state of a collection of bosons or fermions satisfy the proper
symmetry, when a pair of them are exchanged. The state acquires a phase factor +1 or
−1, and hence the state is symmetric or anti-symmetric, when two bosons or two fermions
are exchanged respectively. This limitation comes from the fact that the process in which
two particles are exchanged twice is equivalent to the process in which one particle
is braided around another particle. In three-dimensions, braiding one particle around
another particle is the same as doing no movement of the particles and therefore the state
should be left unchanged after that process. Hence there exist only two possibilities to
pick up a factor of either +1 or −1 by the state after a single exchange. While bosons
were discovered by Bose and Einstein obeying Bose-Einstein statistics, Fermi and Dirac
discovered fermions which obey Fermi-Dirac statistics. These particles are responsible for
fascinating phenomena like Bose-Einstein condensation at very low temperature where
all bosons occupy the lowest state and exhibit superfluidity. Also conductivity, magnetism
and superconductivity are given rise to by fermions.

The above mentioned phenomenon are however independent of the topology of the
systems. Topology is a branch of mathematics which dictates the system properties those
are preserved under the smooth deformations like stretching or twisting but not tearing.
For example a coffee cup and a doughnut (or donut if the reader is from United States)
are topologically equivalent systems. In physics the concept of topology entered with the
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discovery of the Aharonov-Bohm effect [3]. Here a charge q circulates around a magnetic
flux Φ and thereby the state picks up a phase factor einqΦ, where n is the number of times
the charge circulates the flux. It is to be noted that this phase factor is independent of the
nature of the path and depends only on the circulation number.

In two-dimensions, that is in 2+1-dimension, theoretical studies into other possibilities
revealed that there exist particles which break the dichotomy of particle classification
into bosons or fermions in three-dimensions. A particle loop which braids around another
particle can not be deformed into a point without crossing through the other particle.
These particles exhibit non-trivial exchange statistics. That is when one particle at position
ri is exchanged with another particle at position r j in counter-clockwise manner, then the
many-particle state picks up an arbitrary complex phase factor as

|Ψ(ri,r j)〉 → eiθ |Ψ(ri,r j)〉, where eiθ 6=±1. (2.2)

The phase is not merely a ± sign because a second counter-clockwise exchange, or
equivalently braiding one particle at position ri around another particle at position r j,
does not need to bring the state back to the initial state but can result in a non-trivial phase
as

|Ψ(ri,r j)〉 → e2iθ |Ψ(ri,r j)〉, where e2iθ 6= 1, (2.3)

as shown in Fig. 2.3. This difference between two-dimensions and three-dimensions was
first realized by Leinaas and Myrheim [141] and by Wilczek [255]. When θ = 0 or θ = π

the particles are bosons or fermions respectively and when θ = π/2, the particles are
especially named as semions.

As the state can pick up any phase factor after the particle exchange, hence the particles
are nomenclature as anyons [190, 10, 48]. In analogy with the Aharonov-Bohm effect,
this exchange is independent of the nature of the traversed path and depends only on the
winding number. Thereby the systems of anyons are topological. Different exchanges
give rise to different phase factors and those phase factors commute. Therefore they serve
as the member of the Abelian braid group and the anyons are Abelian anyons [140]. The
topological classes of trajectories which take the particles from the initial positions to the
final positions are in one-to-one correspondence with the elements of the braid group. An
element of the braid group can be visualized by thinking of the trajectories of particles
as world-lines or as strands in 2+ 1-dimensional space-time originating at the initial
positions and terminating at the final positions, as shown in Fig. 2.3 (right).

More dramatic scenario happens if the ground state manifold is degenerate. In that
case the set of ground states acquires a unitary matrix Û under two particles exchange.
And the ground states rotate among themselves as

Ψ1(ri,r j)
Ψ2(ri,r j)

.

.

.

→ Û


Ψ1(ri,r j)
Ψ2(ri,r j)

.

.

.

 . (2.4)
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Different exchanges give rise to different unitary matrices and those matrices do not
commute. Therefore they serve as the member of the non-Abelian braid group and the
anyons are non-Abelian anyons [162, 28, 42, 201, 145, 101].

From the viewpoint of charges, anyons come in two flavors as the positively charged
anyons are called the quasiholes and the negatively charged anyons are called the quasi-
electrons. These discoveries pave the path of many new research directions. Examples
include the exposure of new phases of matter and the possibility of building the fault-
tolerant topological quantum computer by using non-Abelian anyons. Systems that can
host anyons are, for example, the fractional quantum Hall systems and two-dimensional
quantum spin liquids [140, 162, 126, 202, 91, 92, 73, 113, 242, 38].
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Lattice Fractional
Quantum Hall States
Containing Anyons

3

„Nature is filled with a limitless number of
wonderful things which have causes and reasons
like anything else but nonetheless cannot be
forseen but must be discovered, for their subtlety
and complexity transcends the present state of
science.

— Robert B. Laughlin

In the fractional quantum Hall systems, gapless edge states are described by the 1+1-
dimensional low-energy conformal field theory [64]. However Moore and Read showed
[162] that the same theory can be used to describe the 2+1-dimensional gapped bulk of the
fractional quantum Hall systems, which is known to be the bulk-boundary correspondence.
The infinite-dimensional matrix product states [182, 177, 174] play an important role, to
construct the lattice fractional quantum Hall models, because of their representation with
respect to the correlators of the fields of the underlying conformal field theory. In this
chapter we analytically construct the lattice versions of the continuum fractional quantum
Hall states hosting anyons.

In Sec. 3.1 we discuss the primary fields and the conformal transformations. We write
the primary fields of the free, massless bosons and derive their correlator. In Sec. 3.2
we describe the fractional quantum Hall states in continuum and discuss the topological
entanglement entropy. We point out the singularity problem of the quasielectron states
in continuum. We construct the lattice Laughlin and the lattice Moore-Read fractional
quantum Hall states on the plane in the presence and in the absence of anyons in Sec.
3.3. We show that the singularity problem with the quasielectrons, in continuum, can be
avoided in the lattice systems. We display the continuum limit of our lattice states. And
in Sec. 3.4 we draw the conclusions. This chapter is based on parts of the following Refs.
[57, 155, 180, 156, 157, 256]:

[1] : Sourav Manna, Julia Wildeboer, Germán Sierra and Anne E. B. Nielsen, "Non-
Abelian quasiholes in lattice Moore-Read states and parent Hamiltonians", Physical
Review B 98, 165147 (2018)

[2] : Sourav Manna, Julia Wildeboer and Anne E. B. Nielsen, "Quasielectrons in
lattice Moore-Read models", Physical Review B 99, 045147 (2019)
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[3] : Sourav Manna*, Biplab Pal*, Wei Wang* and Anne E. B. Nielsen, "Anyons
and fractional quantum Hall effect in fractal dimensions", Physical Review Research 2,
023401 (2020) [* authors equally contributed to this work]

[4] : Sourav Manna, N. S. Srivatsa, Julia Wildeboer and Anne E. B. Nielsen, "Quasi-
particles as detector of quantum phase transitions", [submitted to Physical Review Re-
search (Rapid Com.)], arXiv:1909.02046 (2019)

[5] : Julia Wildeboer, Aniket Patra, Sourav Manna and Anne E. B. Nielsen, "Anyonic
quasiparticles of hardcore anyons", Physical Review B 102, 125117 (2020)

[6] : Callum Duncan, Sourav Manna and Anne E. B. Nielsen, "Topological models in
rotationally symmetric quasicrystals", Physical Review B 101, 115413 (2020) [Editors’
Suggestion]

3.1 Conformal field theory description of the
states

The fractional quantum Hall states can be written as the correlator of the field operators
of the underlying conformal field theory as [162, 174, 60]

|Ψ〉= ∑
n1,...,nN

〈0|Vn1(z1)Vn2(z2), ...,VnN−1(zN−1)VnN (zN)|0〉|n1, ...,nN〉, (3.1)

where 〈0| · · · |0〉 denotes the vacuum expectation value and Vni(zi) is the field operator
at the ith lattice site zi having degrees of freedom ni. Appropriate choices of these field
operators lead to the analytical expressions of the wavefunctions. We particularly focus on
a free, massless bosonic field theory of primary fields where the operators are expressed
in terms of the bosonic creation and annihilation operators. Therefore we discuss below
the essential features of such fields.

3.1.1 The free, massless boson

We consider the free, massless bosonic conformal field theory in 1+ 1-space-time di-
mensions [64] with x and t as the spatial and the temporal coordinates respectively. We
choose the free massless bosonic field φ(x, t) and hence the action is

S =
1

8π

∫ [(
∂tφ(x, t)

)2−
(
∂xφ(x, t)

)2
]
dxdt. (3.2)

This action is scale invariant, that is S is invariant under the following transformation
as

(x, t)→ (ax,at), with a > 0. (3.3)
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Since we will construct the analytical states on the two-dimensional complex plane,
therefore we show how the space-time coordinate of a particle is related to the coordinate
of that particle on the complex plane as follows.

(a). Radial quantization

  

t

t

x

x

t
1

t
1

t
2

t
2

ξ=t+ix
z=e

2πξ/L

L

Figure 3.1.: We show the mapping from the cylinder to the complex plane, which is called as the
radial quantization. On the cylinder of length L the spatial coordinate x is along the
circumference of the cylinder and the temporal coordinate t is along the axis of the
cylinder. The position ξ of a particle is shown by the blue circle on the surface of
the cylinder. And the different time slices are shown by red and violet circles. We
perform the mapping on the plane where x and t are along the angular and the radial
directions respectively. We show the position z of the particle by the blue circle. The
different time slices on the cylinder become the concentric circles as shown by red
and violet circles.

We define a space-time cylinder with the circumference L such that

φ(x+L, t) = φ(x, t). (3.4)

The time t ∈ {−∞,+∞} is along the cylinder axis and x ∈ {0,L} is along the circumfer-
ence of the cylinder. Therefore any point on the cylinder is described by the complex
coordinate

ξ = t + ix. (3.5)

We map the cylinder on a complex plane z, or on a Riemann sphere, through the map-
ping

z = e2πξ/L (3.6)
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which is known as the radial quantization [64] as shown in Fig. 3.1. Therefore each
transverse slice of the cylinder forms a circle on the complex plane and different such
slices constitute concentric circles, which are centered at the origin and each having a
particular t. Therefore x is along the angular direction on the plane and t is along the
radial direction on the plane. And the remote past, as defined by t→−∞, is placed at the
origin z = 0 and the remote future, as defined by t→+∞, approach the point at infinity
on the plane or on the Riemann sphere. And in terms of the coordinates (z, z̄) the action
in Eq. (3.2) can be written as

S =
1

4π

∫
∂zφ(z, z̄)∂z̄φ(z, z̄)dzdz̄ (3.7)

(b). Mode expansion

To construct the analytical states, we have to evaluate the correlator which requires to
express the field in terms of the modes of the bosonic creation and annihilation operators.
And the mode expansion of the field φ(z, z̄) is expressed as [64]

φ(z, z̄) = φ0− iπ0 ln(|z|2)+
∞

∑
n=1

i√
n

(
anz−n−a†

nzn
)
+

(
a−nz̄−n−a†

−nz̄n
)
, (3.8)

where an and a†
n are the bosonic annihilation and creation operators for the nth mode

respectively, z̄ is the complex conjugate of z and π0 is the canonical momentum conjugate
of φ0(z, z̄) in the zeroth-mode, that is for the n = 0 mode, satisfying the following
relations

[φ0,π0] = i and [an,a†
m] = δnm, (3.9)

where δnm is the Kronecker delta function.

3.1.2 Conformal transformations and primary fields

We consider primary fields of free, massless bosons while constructing the states. A
primary field satisfies a particular transformation property under the mapping of the
coordinates, known to be the conformal map. Hence we first introduce the mapping and
then describe the transformation of the primary field under such mapping. Conformal
transformations are the holomorphic maps

z→ w = f (z) (3.10)

and correspondingly the anti-holomorphic maps

z̄→ w̄ = f̄ (z̄) (3.11)
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which preserve the angles. On the complex plane, the global conformal transformations
are given by the so called Mobius transformations [64] as

w =
az+b
cz+d

, with ad−bc 6= 0, (3.12)

where a,b,c,d are complex numbers. These transformations include translation, rotation,
dilation, and inversion.

Now a primary field, say Θ, is defined to be the field which transforms under Eq. (3.12)
as

Θ(z, z̄)→ Θ̃(w, w̄) =

(
∂w
∂ z

)−h(
∂ w̄
∂ z̄

)−h̄

Θ(z, z̄), (3.13)

where h and h̄ are real numbers, which are called as the conformal scaling dimensions of
Θ. Generators of the conformal transformations of the primary fields satisfy the Virasoro
algebra and give rise to the central charge, which is a key feature of the conformal field
theory. Two-point correlations of the primary fields follow the relation

〈Θ(z1, z̄1)Θ(z2, z̄2)〉 ∝
1

(z1− z2)h1+h2(z̄1− z̄2)h̄1+h̄2
, (3.14)

which is reminiscent of the scale invariant decay of the correlations in gapless systems.

3.1.3 Primary fields of the free, massless boson

As we are using 1+1-dimensional conformal field theory, therefore the field operators
have to be conformal invariant and accordingly the wavefunctions are invariant under
conformal transformations. This in turn means that the field operators have to be primary
fields maintaining the conformal transformations. We note that the bosonic field φ is not
a primary field since the two-point correlator takes the form

〈φ(z1)φ(z2)〉 ∝− ln(z1− z2), (3.15)

which is not the same as Eq. (3.14).

However we can construct primary fields for the free, massless bosons by using φ . We
write the primary fields, which are known as the vertex operators, as

Vγ(z, z̄) =: eiγφ(z,z̄) :, γ ∈ R, (3.16)

where : · · · : denotes the normal ordering. Since the underlying theory is massless hence
we can decompose the non-chiral bosonic field φ(z, z̄) into its holomorphic or chiral part
φ(z) and its anti-holomorphic or anti-chiral part φ(z̄). Therefore we have

φ(z, z̄) = φ(z)+φ(z̄). (3.17)
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This licenses us to decouple the non-chiral vertex operator as

Vγ(z, z̄) =Vγ(z)×Vγ(z̄) (3.18)

into its chiral and anti-chiral parts. And the coefficients of the chiral wavefunction in Eq.
(3.1) can be evaluated from their non-chiral part as∣∣∣〈0|Vγ1(z1), ...,VγN (zN)|0〉

∣∣∣2 = 〈0|Vγ1(z1, z̄1), ...,VγN (zN , z̄N)|0〉, (3.19)

where the specific choices of Vγi(zi) lead to the desired analytical forms of the wave-
functions. The vacuum correlation function of the chiral vertex operators evaluates
to

〈0|Vγ1(z1), ...,VγN (zN)|0〉= Ξ δγ

N

∏
j<k

(z j− zk)
γ jγk , (3.20)

where Ξ is a phase factor which can be chosen at will. And we have

δγ = 1 if
N

∑
j=1

γ j = 0, (3.21)

which is called the charge neutrality condition [64]. This Eq. (3.20) is the key to construct
the analytical wavefunctions by using conformal field theory.

3.2 Continuum fractional quantum Hall states

In the fractional quantum Hall effect the particles are subjected to the external magnetic
field and are strongly correlated through the Coulomb interactions. Therefore diagonaliza-
tion of the Hamiltonian to get the ground state is very difficult. Instead, being motivated
by the physical insights, Laughlin simply wrote down an ansatz for the state [140]. He
described the physics at the lowest Landau level at filling fraction ν = 1/q, where q is an
odd integer, by the following state as

ΨL(n1, ...,nM) =
M

∏
j<k

(
Z j−Zk

)qe−
1
4 ∑

M
j=1 |Z j|2 , (3.22)

where Z j are the positions of M particles on a complex plane and the magnetic length is
set to be unity. The state is anti-symmetric and hence defines fermions, as for example
electrons. The Gaussian factor appears by solving the single particle problem in the
lowest Landau level. The pre-factor, which is called as the Jastrow factor vanishes with
a zero of order q whenever two electrons are at the same position, as guaranteed by the
Pauli exclusion principle. The state has a very high overlap with the ground state of the
exact Hamiltonian with Coulomb interactions.
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Later it was realized that the guessed state in Eq. (3.22) can be written as the conformal
field correlator with the vertex operators

V (Z j) =: ei
√

qφ(Z j) : (3.23)

of the conformal field theory as [162]

ΨL(n1, ...,nM) = 〈0|
M

∏
j=1

: ei
√

qφ(Z j) :: e−i
√

q
∫

ρφ(Z)d2Z : |0〉, (3.24)

where

ρ =
1

2πq
(3.25)

is the electron density and the term in Eq. (3.24) involving ρ satisfies the charge neutrality
condition.

The filling fraction ν is defined as the number of particles per magnetic flux as

ν =
M
Nφ

. (3.26)

Now a gapped excitation above the ground state of Eq. (3.22) can be obtained by adding
a flux quantum to the system. That is by inserting positive flux tubes. Experimentally this
can be obtained by slightly increasing the magnetic field in the system. The wavefunction
with a well-screened excitation at position η ∈ C is [224]

Ψ
h
L(n1, ...,nM) =

M

∏
i=1

(Zi−η)
M

∏
j<k

(
Z j−Zk

)qe−
1
4 ∑

M
j=1 |Z j|2 . (3.27)

We note that the wavefunction vanishes at point η . That is a "hole" is created in the
electron liquid. This "hole" has a remarkable property of carrying fractional charge and
of obeying fractional statistics which are distinguishable from the elementary particle
properties. And the "hole" is called the quasihole. We can estimate the charge of the
quasihole as follows. We place q quasiholes at point η and therefore write the state as

Ψ
h{q}
L (n1, ...,nM) =

M

∏
i=1

(Zi−η)q
M

∏
j<k

(
Z j−Zk

)qe−
1
4 ∑

M
j=1 |Z j|2 . (3.28)

This state describes the Laughlin state of Eq. (3.22) with the deficit of an electron at
position η . That is q number of quasiholes are responsible to take one electron out of the
system. Therefore each quasihole carries a fraction 1/q of the electron charge.

Similar to Eq. (3.24), the state in Eq. (3.28) can be expressed with the vertex opera-
tors

V (ηk) =: e
i√
q φ(wk) : (3.29)
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for k ∈ {1, ...,Q} number of quasiholes. As opposed to the elementary particles as
fermions and bosons in three-dimensions, these quasiparticle excitations in two-dimensions
follow any statistics between the Fermi-Dirac statistics and the Bose-Einstein statistics.
Hence these quasiparticles are nomenclature as anyons. For example the Laughin quasi-
holes acquire a phase eiπ/q under an anti-clockwise exchange.

Beyond the hierarchical construction based on the Laughlin state, another candidate of
the fractional quantum Hall effect has gained a lot of recognition since its discovery. This
is the Moore-Read Pfaffian state [162] at the Landau level filling factor 5/2 which can
be thought to consist of the fully filled lowest Landau level with both spin up-spin down
electrons and followed by the spin polarised second Landau level at 1/2 filling. The state
reads as

ΨMR(n1, ...,nM) = Pf

(
1

Zi−Z j

)
M

∏
j<k

(
Z j−Zk

)qe−
1
4 ∑

M
j=1 |Z j|2 , (3.30)

where ’Pf’ stands for the Pfaffian which is the square root of the determinant, with
proper sign, of an anti-symmetric matrix of even order. We define the Pfaffian of an
anti-symmetric matrixMi j of order N ×N as

Pf(M) =
1

2N/2(N/2)! ∑
σ

sign(σ)
N/2

∏
k=1
Mσ(2k−1),σ(2k), (3.31)

where σ denotes the symmetric group of dimension N and sign(σ) is the signature of σ .
Therefore the state in Eq. (3.30) defines fermions for q even and defines bosons for q odd.
This state can be expressed with the vertex operators

V (Z j) = ψ(Z j) : ei
√

qφ(Z j) : (3.32)

in a similar manner as before, where ψ(Z j) is the Majorana field [31] at the jth particle
position Z j. The quasiholes in the Moore-Read state carry a charge 1/2q of the electron
charge.

3.2.1 Quasielectron states and the singularity problem

We have talked about the quasiholes so far. Now the quasiparticles with opposite charges
of the quasiholes are expected to be created by inserting negative flux tubes in the systems
and thereby slightly decreasing the magnetic field. These are termed as the quasielectrons.
Experimentally the quasiholes and the quasielectrons play a very similar role, however
the quasielectrons are much harder to describe theoretically in parallel to that of the
quasiholes. Because it is easier to reduce the electron density locally than to increase it
due to the Pauli exclusion principle.
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In the same spirit of Eq. (3.27) if we want to increase the electron density, and thereby
to decrease the angular momentum, then we need to multiply Eq. (3.22) by the factor

M

∏
i=1

(Zi−η)−1. (3.33)

But we note that the wavefunction is now singular and hence is ill-defined. Instead
Laughlin proposed to decrease the angular momentum by differentiation and wrote the
state for the quasielectron at η in the Laughlin state as [224]

Ψ
e
L(n1, ...,nM) = e−

1
4 ∑

M
j=1 |Z j|2

M

∏
i=1

(
2

∂

∂Zi
− η̄

)
M

∏
j<k

(
Z j−Zk

)q
. (3.34)

This state is much harder to deal with both analytically and numerically in comparison to
the Laughlin state containing quasiholes, as shown in Eq. (3.28). In addition, this state
does not properly describe a quasielectron [110]. In the same way the quasielectrons in
other states, like the Moore-Read states, are more difficult to handle with respect to their
quasihole counterparts.

3.3 Anyonic lattice fractional quantum Hall states

Mainly two approaches are taken to realize the continuum fractional quantum Hall physics
on the lattices. One approach is to mimic the Landau level by constructing the flat-band
fractional Chern insulator models [271, 22, 108, 216, 246, 247, 214, 79, 63]. Here the real
background magnetic field is replaced by the complex hopping terms in the Hamiltonian
and thereby breaking the time-reversal symmetry. These flat-band models provide an
exact equivalence between the Landau level and the lattice systems. The other approach
is to mimic the interactions directly to construct the lattice chiral spin liquid states [256,
197, 69, 169, 227, 173, 170, 157, 156, 175] which have the same topological properties as
those of the continuum fractional quantum Hall states. An example of the latter approach
was first done by Kalmeyer and Laughlin [115] to propose the Laughlin type states on
the lattices for bosons, that is for ν = 1/2. This state has the similar expression as the
state in Eq. (3.22) but now with q = 2 and the particles are placed on the lattice sites,
that is Zi denotes the ith lattice site position. Some recent works [70, 71, 69, 169] in this
direction show that the topological properties remain same while translating the states in
the lattice systems. Also the realization of anyons is possible in the lattice models and the
quasielectron state can be constructed in a similar fashion to that of the quasihole state
[175, 156]. In this section, by following this latter approach, we derive the analytical
forms of the anyonic lattice Laughlin and lattice Moore-Read states on a plane with
particular choices of the vertex operators, and by restricting the magnetic flux to only go
through the lattice sites.

We note that the continuum model is rotationally invariant for any amount of rotation,
whereas the lattice model breaks the continuous rotational symmetry but possesses the
discrete rotational symmetry. This can be thought of as an anisotropy in the system due
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Re(zj )

Im(zj )
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0+ η 1
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Figure 3.2.: We define the lattice on a two-dimensional complex plane, as defined by
[Re(z j), Im(z j)], and on a disk shaped geometry. Each lattice site is either empty, as
pictured by the black circles, or singly occupied, as pictured by the red filled circles,
or doubly occupied, as pictured by the blue filled circles, respectively. We mark the
area a of a lattice site with a green square where a→ 0+ in the continuum limit,
as shown in (a), and where a→ 2π in the lattice limit, as shown in (b). We take N
number of lattice sites and we define η = a/2π . We illustrate the transformation
between the continuum limit, that is the scenario η → 0+,N → ∞ in (a) and the
lattice limit, that is the scenario η → 1 in (b) by varying η between 0 and 1. The
interpolation is performed by keeping ηN fixed throughout.

to the underlying lattice structure. As for example the square lattice without any anyon
preserves C4 symmetry, and hence it is invariant under a π/2 rotation. By choosing
different kinds of lattice structures one can import further anisotropies, like C2 symmetry,
and therefore a π rotation invariance, for a rectangular lattice etc. We point out that here
the absence of the continuous rotational symmetry is solely due to the underlying lattice
structure and is completely different from the continuous rotational symmetry, under
the Mobius transformations, of the primary fields. The vertex operators maintain the
Mobius transformations and therefore the constructed analytical states exhibit continuous
rotational symmetry.

3.3.1 Lattice Laughlin states on a plane

On the two-dimensional complex plane we construct family of the Laughlin states at the
Landau level filling factor 1/q and of arbitrary lattice filling factor, in the presence and in
the absence of anyons, as follows.
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(a). States without anyons

We consider an arbitrary lattice with N lattice sites at positions z j, j ∈ {1, ...,N}. Specific
choices of z j lead to the different types of lattices, for example square lattice etc. Let
us define a local basis state at the jth lattice site as |n j〉, where n j defines the number of
particles at site j. We take the local basis states as n j ∈ {0,1, ..., p} denoting the lattice
occupancy at the jth site. For example with n j ∈ {0,1} maximum one boson, that is
the hardcore limit or one fermion is allowed at each site, with n j ∈ {0,1,2} at most two
bosons or two fermions of different types are allowed at each site. Therefore the total
Hilbert space dimension becomes (p+1)N .

We take a as the average area per lattice site and define

η =
a

2π
. (3.35)

Hence we set the magnetic length to be unity. The parameter η allows us to interpolate
between the lattice limit and the continuum limit. We keep ηN fixed throughout this
interpolation and take η → 1 to be the lattice limit and take

η → 0+, N→ ∞ (3.36)

as the continuum limit. We see below that this in turn keeps the particle number per area
fixed in the system while interpolating the number of lattice sites per particle from q in
the lattice limit to infinite in the continuum limit. We show in Fig. 3.2 such an example
with q = 2 and with n j ∈ {0,1,2}.

We describe the state on the lattice as

|Ψ〉= 1
C ∑

n1,...,nN

Ψ|n1, ...,nN〉 with C2 = ∑
n1,...,nN

|Ψ|2, (3.37)

where C is a real constant. And Ψ can be obtained by following the conformal field theory
construction of the states as shown in Eq. (3.1) and thereby using the correlators of the
vertex operators Vn j(z j) of the underlying conformal field theory as [256, 175, 197, 169,
180]

Ψ({z j}) = 〈
N

∏
j=1

Vn j(z j)〉 with Vn j(z j) =: ei(qn j−η)φ(z j)/
√

q :, (3.38)

where we denote Ψ as Ψ({z j}) and 〈· · · 〉 as the vacuum expectation value. We have φ(z j)
as the chiral field of the free massless bosons of the U(1) conformal field theory with
central charge c = 1 and : · · · : denotes the normal ordering. We note that the charge
neutrality condition is already taken care of by suitably choosing the vertex operators
in Eq. (3.38). Hence the background charge is not needed as opposed to the continuum
version of the state.
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The correlator in Eq. (3.38) evaluates to the Jastrow factors as

Ψ({z j}) = δn ∏
i< j

(zi− z j)
qnin j ∏

i 6= j
(zi− z j)

−ηni , (3.39)

where δn = 1 if the number of particles is

M =
ηN
q

(3.40)

and otherwise δn = 0. The lattice filling fraction is

M
N

=
η

q
(3.41)

which becomes the Landau level filling factor 1/q for η = 1. The state in Eq. (3.39)
describes fermions and bosons for q odd and q even respectively. We note that the factor

∏
l< j

(zl− z j)
qnln j

(3.42)

is interpreted as the attachment of q fluxes to each particle and the factor

∏
l 6= j

(zl− z j)
−ηnl

(3.43)

corresponds to the background charge in the lattice.

(b). States with anyons

We consider Q anyons at positions wk, k ∈ {1, ...,Q} and define the vertex operators from
c = 1 conformal field theory as [180, 175, 169, 197]

Wpk(wk) =: eipkφ(wk)/
√

q : with pk ∈ ±{0,1, ...,q−1}, (3.44)

where wk are not restricted to lie on the lattice sites, and hence wk can be anywhere in
the complex plane. The charge of the kth anyon is given as pk/q where we assume the
standard charge of a particle as −1. Therefore the positive and the negative values of pk
describes the quasiholes and the quasielectrons respectively.

We write the correlator as

Ψ({z j},{wk}) = 〈
N

∏
j=1

Vn j(z j)
Q

∏
k=1

Wpk(wk)〉, (3.45)

where Vn j(z j) is the same as used in Eq. (3.38) and we denote Ψ as Ψ({z j},{wk}). We
evaluate the correlator as the Jastrow factors as

Ψ({z j},{wk}) = δn ∏
i< j

(zi− z j)
qnin j ∏

i6= j
(zi− z j)

−ηni ∏
i, j
(wi− z j)

pin j , (3.46)
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where δn = 1 if the number of particles is

M =

(
ηN−∑k pk

)
q

(3.47)

and otherwise δn = 0. Therefore a single quasihole or a single quasielectron remove or
add a pk/q fraction of particles respectively, which indicates the fractional charge of the
anyon as pk/q.

3.3.2 Lattice Moore-Read states on a plane

On the two-dimensional complex plane we construct family of the Moore-Read states at
the second Landau level with filling factor 1/q and of arbitrary lattice filling factor, in the
presence and in the absence of anyons, as follows.

(a). States without anyons

We associate the following vertex operator to each lattice site z j, j ∈ {1, ...,N} as [69,
9]

Vn j(z j) = χn j(z j)ψ(z j)
∆n j : ei(qn j−η)φ(z j)/

√
q : with χn j(z j) = eiπ( j−1)ηn j , (3.48)

where ψ(z j) is the holomorphic free Majorana fermion field with conformal dimension
hψ = 1/2 and with central charge c = 1/2 of the underlying Ising conformal field theory.
We define ∆n j = 1 if n j = 1 and ∆n j = 0 otherwise. Therefore the Majorana field acts
only on the singly occupied lattice sites. The phase factor χn j(z j) could be taken as will.
We have chosen this particular form of χn j(z j) because it ensures that the analytical state
is SU(2) invariant for q = 1 and in the absence of anyons. However a different choice of
the single particle phase factors will not affect the topological properties of the states, for
example the topological entanglement entropy, braiding statistics of the anyons etc.

The underlying conformal field theory here is with the central charge

c =
1
2
+1, (3.49)

where c = 1/2 part provides the Pfaffian contribution which is also known as the Ising
contribution since this conformal field theory part also describes the Ising spin chain
model, coming from the Majorana sector, and c = 1 part describes the Jastrow factors,
coming from the bosonic sector, in the analytical states.

The correlator gets decoupled as a product into the two contributions as the free
fermionic part and the free bosonic part as

Ψ({z j}) = 〈
N

∏
j=1

ψ(z j)
∆n j 〉〈

N

∏
j=1

: ei(qn j−η)φ(z j)/
√

q :〉, (3.50)
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where we denote Ψ = Ψ({z j}). We evaluate the correlator to get the analytical state as

Ψ({z j}) = δn Pf

(
1

z′i− z′j

)
∏
i< j

(zi− z j)
qnin j ∏

i6= j
(zi− z j)

−ηni , (3.51)

where δn = 1 if the number of particles is

M =
ηN
q

(3.52)

and otherwise δn = 0. The symbol ’Pf’ stands for the Pfaffian, which we have defined
in Eq. (3.31), and which, to be non-zero, requiresM as even, whereM represents the
number of singly occupied sites. We denote the singly occupied lattice sites by z′. Since
the Pfaffian is antisymmetric therefore the state in Eq. (3.51) corresponds to bosons and
to fermions for q odd and for q even respectively.

(b). States with non-Abelian or Ising anyons

We consider the following vertex operator at each anyon position wk, k ∈ {1, ...,Q} as
[157, 156]

Wpk(wk) = σ(wk) : eipkφ(wk)/
√

q : with pk =±1/2, (3.53)

where σ(wk) is the holomorphic spin operator of the chiral Ising conformal field theory
and having the conformal dimension hσ = 1/16. The charge of the kth anyon is pk/q
where we assume the standard charge of a particle as −1 and hence the positive and the
negative values of pk describes the quasiholes and the quasielectrons respectively.

We write the states as

|Ψα〉=
1

Cα
∑

n1,...,nN

Ψα({z j},{wk})|n1, ...,nN〉

with C2
α = ∑

n1,...,nN

∣∣∣Ψα({z j},{wk})
∣∣∣2, (3.54)

where Ψα({z j},{wk}) can be expressed as the conformal blocks of the underlying con-
formal field theory by following the construction as shown by Moore and Read for the
continuum case and its latter extensions to the lattices. We have Cα as a real constant.

We have many conformal blocks of the holomorphic spin operators σ , as given in Eq.
(3.53), of the Ising conformal field theory. The number of conformal blocks depends on
the number of the anyons present in the system. The total number of different labels of the
conformal blocks is denoted by the vector α in Eq. (3.54). And the number of conformal
blocks for each of the topological charge sectors identity I or Majorana ψ is [9, 31]

2
Q
2−1 (3.55)
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for the Q anyons in the system. Hence we always need an even number of anyons in the
systems. Therefore the wavefucntions |Ψα〉 in Eq. (3.54) represent a degenerate set of
wavefunctions for fixed anyon positions. And this scenario constitutes the basis for the
non-Abelian statistics of the anyons. Now all the fields must be fused to the identity to
provide a non-zero correlator and we have the following non-trivial Ising fusion algebra
as

ψ×ψ = I; ψ×σ = σ ; σ ×σ = I +ψ. (3.56)

We specify the fusion channel of the Ising spin fields

σ(w2k−1) and σ(w2k) (3.57)

by the kth entry of the vector α . And we have if αi = 0 then these fields fuse to the
identity I or correspondingly if αi = 1 then these fields fuse to the Majorana field ψ .
Therefore depending on the number of anyons in the system the analytical forms of the
states become different. And we note that the identity I and the Majorana ψ are referred
to the two different topological charge sectors.

We write the correlator as

Ψα({z j},{wk}) =〈
N

∏
j=1

ψ(z j)
∆n j

Q

∏
k=1

σ(wk)〉α

×〈
N

∏
j=1

: ei(qn j−η)φ(z j)/
√

q :
Q

∏
k=1

: eipkφ(wk)/
√

q :〉,
(3.58)

where the second part provides the Jastrow factors from c = 1 conformal field theory
and are the same for an arbitrary even number of anyons in the system. The first part
comes from the c = 1/2 conformal field theory and gives rise to the different terms which
depend on the number of anyons in the system. These anyons are often called as the Ising
anyons. We explicitly write the analytical forms of the states containing two and four
anyons in the systems as follows.

(1). State with two anyons: In this case we have one conformal block for each
topological charge sector. Depending on the fusion channel of the two σ fields, as
mentioned in Eq. (3.56), we have two independent possibilities. That is for Q = 2 we
have one state for each of the topological charge sectors I and ψ . When two σ fields fuse
to the identity I, or fused to the Majorana ψ , then we have an even, or an odd, number of
the Majorana field ψ in Eq. (3.58) respectively which in turn indicates that we have an
even, or an odd, number of the singly occupied lattice sites respectively. We are interested
in the state corresponding to the fusion channel I, that is corresponding to the topological
charge sector I, since we find the expression for the correlator is simpler.
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We write the state as

Ψα({z j},{wk}) = δn 2−
M
2 (w1−w2)

− 1
8 Pf(A)∏

i, j
(wi− z′j)

− 1
2 ∏

i< j
(zi− z j)

qnin j

×∏
i 6= j

(zi− z j)
−ηni ∏

i< j
(wi−w j)

pi p j/q
∏
i, j
(wi− z j)

pin j ∏
i, j
(wi− z j)

−η pi/q
(3.59)

with

Ai j =

(
(z′i−w1)(z′j−w2)+(i↔ j)

z′i− z′j

)
, (3.60)

where δn = 1 if the number of particles is

M =

(
ηN−∑k pk

)
q

(3.61)

and otherwise δn = 0. We haveM as even and α = I.

(2). States with four anyons: In this case we have two conformal blocks for each
topological charge sector since we have Q = 4 here. This gives rise to the degeneracy in
the system. We are interested in the states corresponding to the fusion channel I of the
four σ fields, that is corresponding to the topological charge sector I. We denote the two
conformal block indices as mI = 0 and as mψ = 1.

We write the states as

Ψα({z j},{wk}) = δn 2−
M+1

2 (w1−w2)
− 1

8 (w3−w4)
− 1

8

(
(1− x)

1
4 +

(−1)mα

(1− x)
1
4

)− 1
2

×
(
(1− x)

1
4 Φ(13)(24)+(−1)mα (1− x)−

1
4 Φ(14)(23)

)
∏
i, j
(wi− z′j)

− 1
2 ∏

i< j
(zi− z j)

qnin j

×∏
i6= j

(zi− z j)
−ηni ∏

i< j
(wi−w j)

pi p j/q
∏
i, j
(wi− z j)

pin j ∏
i, j
(wi− z j)

−η pi/q

(3.62)

with

Φ(k1k2)(k3k4) = Pf

(
(wk1− z′i)(wk2− z′i)(wk3− z′j)(wk4− z′j)+(i←→ j)

(z′i− z′j)

)
(3.63)

and

x =
(w1−w2)(w3−w4)

(w1−w4)(w3−w2)
, (3.64)

whereM is even and x is called the anharmonic ratio. We label the anyons by ki in

Φ(k1k2)(k3k4) and we have α ∈ {I,ψ}. (3.65)
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We have δn = 1 if the number of particles is

M =

(
ηN−∑k pk

)
q

(3.66)

and otherwise δn = 0.

(c). States with Abelian anyons

We associate the vertex operator from Eq. (3.48) to each lattice site and the vertex operator
from Eq. (3.44) to each anyon position. These give the lattice Moore-Read state hosting
the Abelian type anyons in the system. We write the correlator as

Ψ({z j},{wk}) = 〈
N

∏
j=1

ψ(z j)
∆n j 〉〈

N

∏
j=1

: ei(qn j−η)φ(z j)/
√

q :
Q

∏
k=1

: eipkφ(wk)/
√

q :〉 (3.67)

and the analytical state reads as

Ψ({z j},{wk}) = δn Pf

(
1

z′i− z′j

)
∏
i< j

(zi− z j)
qnin j ∏

i 6= j
(zi− z j)

−ηni ∏
i, j
(wi− z j)

pin j ,

(3.68)

where δn = 1 if the number of particles is

M =

(
ηN−∑k pk

)
q

(3.69)

and otherwise δn = 0. We requireM as even.

3.3.3 Quasielectron states and avoiding the singularity
problem

We have discussed in Sec. 3.2 about the singularity problem for the quasielectron states
in the continuum. There the states correspond to the particle coordinates and the particles
can be anywhere in the entire system. Now the creation of a quasielectron at a position
means that the density of the particles are increased locally. This in turn corresponds that
the quasielectron attracts the particles towards it. Now when a particle, say the kth one
at position Zk, coincides with the quasielectron, say the jth one at position w j, then the
factor

(w j−Zk)
p j , (3.70)
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with p j negative, creates the singularity and the state is not well defined anymore. This
trouble arises if one constructs the quasielectron state in a similar manner as that of the
quasihole states.

Now in the lattice systems we restrict the particles to sit only on the lattice sites and we
keep the anyon positions flexible. Therefore we get the factor

(w j− zk)
p jnk , (3.71)

with p j negative and nk corresponds to the occupancy of the kth lattice site at position
zk. We place the anyons anywhere in between the lattice sites and thereby we avoid
the singularity since the anyon positions do not coincide with the particle positions.
The placement of anyons exactly on the lattice sites is also possible. In that case the
corresponding lattice site where the quasihole, or the quasielectron, is placed remains
unoccupied, or occupied respectively. That is we take away the degrees of freedom of
that particular lattice site by putting either no particle for the quasihole or by putting one
particle for the quasielectron, while maintaining the degrees of freedom for the rest of the
lattice sites as either occupied or empty. Therefore the factor

(w j− zk)
p jnk , (3.72)

with p j negative and for all nk values, can be incorporated in the normalization constant
in the limit w j → zk. In this way the singularity problem does not appear and the
quasielectron states can be constructed in the same way as those of the quasihole states
[156, 175].

3.3.4 Continuum limit of the lattice states

We take the continuum limit of the lattice fractional quantum Hall states, by following
the procedure as shown in Refs. [69, 157]. The lattice construction of the anyonic states
closely resembles to the continuum states where the wavefunctions are expressed in the
basis spanned by the particle coordinates and the background charge is represented by
the Gaussian factors. We take the states on a two-dimensional lattice defined on a disk of
radius RD→ ∞. We reach the continuum limit by considering

η → 0+, N→ ∞ (3.73)

with ηN fixed which in turn fix the particle number M of the system as depicted in Fig.
3.2. We choose lattices such that the area per lattice sites is constant a, and thereby

η =
a

2π
(3.74)

is constant, but similar outcomes hold also for other lattices where a and hence η is
position dependent.
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We first note that in the continuum limit we can write the factor∣∣∣ ∏
j( 6=l)

(zl− z j)
−η

∣∣∣ (3.75)

as ∣∣∣ ∏
j( 6=l)

(zl− z j)
−η

∣∣∣= ∣∣∣exp
(
− ∑

j( 6=l)
η ln(zl− z j)

)∣∣∣= exp
(
−
∫

D
ln(
∣∣∣zl− z

∣∣∣)d2z/2π

)
,

(3.76)

where the notations

∏
j( 6=l)

and ∑
j( 6=l)

(3.77)

represent respectively the product and the sum over the index j, which is not equal to l,
only. In the continuum limit the integral in Eq. (3.76) evaluates to

|zl|2 + constant. (3.78)

In a similar fashion the continuum limit of the factor

∏
l, j
(wl− z j)

−pl/q
(3.79)

can be computed.

Therefore we inscribe

∏
j 6=l

(zl− z j)
−ηnl ∝ e−i∑l gl e−∑l nl |zl |2/4,

∏
l, j
(wl− z j)

−pl/q
∝ e−i∑l fl e−

1
4

2π

a ∑l
pl
q |wl |2 ,

(3.80)

where we have

gl = Im
[

η ∑
j( 6=l)

nl ln(zl− z j)

]
and fl = Im

[
1
q ∑

j
pl ln(wl− z j)

]
(3.81)

as real numbers which give rise to the phase factors. These overall phase factors are the
gauge factors which can be transformed away if needed. And these phase factors do not
hamper the properties like particle-particle correlations and the entanglement entropy of
the state.

3.4 Conclusions
In this chapter we have constructed the lattice fractional quantum Hall states hosting
anyons. The states are derived as the conformal field correlators acting on the lattice
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sites and on the anyon positions. We have explicitly constructed the lattice Laughlin
state and the lattice Moore-Read state on the plane in the presence and in the absence of
anyons. We have shown that the singularity problem with the quasielectrons, as appeared
in the continuum, can be avoided in the lattice systems. Thereby we have shown that the
quasielectron states can be constructed in a similar way as those of the quasihole states.
We introduce a parameter in the states which allows us to interpolate between the lattice
models and their continuum limits.

These analytical forms of the states facilitate to investigate the properties of the states
and also to compute the properties of the anyons, both quasiholes and quasielectrons,
for larger system sizes using the Monte-Carlo simulations. Furthermore exact parent
Hamiltonians can be derived analytically which have the derived analytical states as the
ground states. We discuss these in the upcoming chapters.
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Non-Abelian Anyons in
Lattice Moore-Read
Models

4

„Over coffee at the Red Door Cafe that afternoon,
we bonded over our shared admiration for a
visionary paper by Greg Moore and Nick Read
about non-abelian anyons in fractional quantum
Hall systems, though neither of us fully
understood the paper (and I still don’t). Maybe,
we mused together, non-abelian anyons are not
just a theorist’s dream . . . It was the beginning of
a beautiful friendship.

— John Preskill with Alexei Kitaev

Anyons appear in two flavors, as the quasiholes, which are the positively charged
anyons and as the quasielectrons, which are the negatively charged anyons. While the
quasiholes [261, 274, 273] are well explored, the quasielectrons are much harder to
analyze [24, 86, 263, 87, 129] in the continuum as we discussed in Chapter-3. Recently
it was shown that, in the lattice models, the quasielectrons can be investigated [175]
in a similar way as that of the quasiholes. However the Abelian type of anyons in the
Laughlin state are researched till now. In this chapter we explore the properties of the
non-Abelian anyons, which are also known as the Ising anyons, in the lattice Moore-Read
state at the Landau level filling factor 5/2 for which the analytical states were derived
in Chapter-3. We justify our claim that the non-Abelian quasielectrons can be created
and can be investigated in a way similar as that of the non-Abelian quasiholes. We derive
the parent Hamiltonians for which the analytical states are exact ground states. We also
create the non-Abelian anyons in a simpler model of hardcore bosons, which is known as
the Kapit-Mueller model.

In Sec. 4.1 we investigate the density profiles, shapes, excess charge distributions and
charges of the non-Abelian Ising anyons in the lattice Moore-Read states. We find that the
anyons are well-screened and we show that the quasielectrons can be created in a similar
way as that of the quasiholes. We research the fractional braiding statistics of the anyons
in Sec. 4.2 and show that the anyons are non-Abelian and the statistics are as expected
from the continuum. We derive the parent Hamiltonians for our lattice models in Sec.
4.3 and find that the Hamiltonians contain few-body long-range interactions. We create
anyons in the Kapit-Mueller model in Sec. 4.4 and show that the quasielectrons can be
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created in the same fashion as that of the quasiholes. We find that our analytical lattice
Moore-Read states are relevant to the Kapit-Mueller model. We draw the conclusions in
Sec. 4.5. This chapter is based on parts of the following Refs. [156, 157]:

[1] : Sourav Manna, Julia Wildeboer and Anne E. B. Nielsen, "Quasielectrons in
lattice Moore-Read models", Physical Review B 99, 045147 (2019)

[2] : Sourav Manna, Julia Wildeboer, Germán Sierra and Anne E. B. Nielsen, "Non-
Abelian quasiholes in lattice Moore-Read states and parent Hamiltonians", Physical
Review B 98, 165147 (2018)

4.1 Density profiles and charges of the anyons
In this section we investigate how the anyons influence the particle densities in the lattice
sites. We analyze the shape of the anyons and compute their charges. We employ Monte-
Carlo simulations [241, 199, 253, 90] and take n j ∈ {0,1}, η = 1, and q = 2 in the
anyonic lattice Moore-Read states, as defined in Chapter-3 in Sec. 3.3 in Eqs. (3.51),
(3.59), (3.62).

4.1.1 Density profiles of anyons
We define particle density of the ith lattice site for any state |Φ〉 to be

〈n(zi)〉= 〈Φ|n(zi)|Φ〉. (4.1)

Therefore density profile of the anyons can be evaluated as

ρ(zi) = 〈n(zi)〉Q6=0−〈n(zi)〉Q=0, (4.2)

where n(zi) is the particle occupation number at the ith lattice site. We have

〈n(zi)〉Q 6=0 and 〈n(zi)〉Q=0 (4.3)

as the particle densities of the ith lattice site in the presence and in the absence of anyons
in the state respectively.

We note that, due to the restriction of the particle number as

M =

(
ηN−∑

Q
k=1 pk

)
q

, (4.4)

the insertion of a quasihole or a quasielectron leads respectively to the decrement or to
the increment of the total number of particles in the system by a fraction pk/q.

Now, we require the Pfaffian factors in both the wavefunctions containing the anyons,
that is Eqs. (3.59) and (3.62), and without anyons, that is Eq. (3.51), to be non-zero.
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Figure 4.1.: In (a), (c), (e): We represent lattice sites, quasiholes and quasielectrons, respectively
by the black circles, the green stars and the black squares. We take the number
of lattice sites N = 112. The density profiles ρ(zi) from Eq. (4.2), defined as the
particle density difference between the states in the presence and in the absence
of anyons, are plotted with colorbars for the cases of (a) two quasiholes, (c) two
quasielectrons, and (e) one quasihole-one quasielectron. We place the anyons in
the middle of the lattice plaquette. The anyons are well-screened with the radii of a
few lattice constants. The colors on the edges appear due to the charges at infinity
in the state containing anyons as explained in the main text. In (b), (d), (f): The
excess charge distributions Qk with k ∈ {1, ...,Q} are computed from Eq. (4.10) and
are plotted as a function of the radial distances r/

√
2π , from the anyon positions,

corresponding to the above mentioned anyon configurations respectively. The anyon
positions are symmetric with respect to π/2 rotation of the lattice. Therefore the
excess charge plots are on top of each other. The anyon charges approach �±0.25
for large r with an errorbar of size 10−4 arising from the Monte-Carlo simulations.
We note that the density profiles are similar for the quasiholes and the quasielectrons
except for a sign as we can see from the plot of ∑k Qk in (f).
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Figure 4.2.: In (a), (c), (e): We represent lattice sites, quasiholes and quasielectrons, respectively
by the black circles, the green stars and the black squares. We take the number of
lattice sites N = 112. The density profiles ρ(zi) from Eq. (4.2), defined as the particle
density difference between the states in the presence and in the absence of anyons,
are plotted with colorbars for the cases of (a) four quasiholes, (c) four quasielectrons,
and (e) two quasiholes-two quasielectrons. We place the anyons in the middle of
the lattice plaquette. The anyons are well-screened with the radii of a few lattice
constants. The colors on the edges appear due to the charges at infinity in the state
containing anyons as explained in the main text. In (b), (d), (f): The excess charge
distributions Qk with k ∈ {1, ...,Q} are computed from Eq. (4.10) and are plotted as
a function of the radial distances r/

√
2π , from the anyon positions, corresponding

to the above mentioned anyon configurations respectively. The anyon positions are
symmetric with respect to π/4 rotation of the lattice. Therefore the excess charge
plots are on top of each other. The anyon charges approach �±0.25 for large r with
an errorbar of size 10−4 arising from the Monte-Carlo simulations. We note that the
density profiles are similar for the quasiholes and the quasielectrons except for a sign
as we can see from the plot of ∑k Qk in (f).
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Thereby we need to set the number of particles M to be even in both the cases. We
inspect the conditions on M as arising from the δn factors in the wavefunctions and we
find that we can not fulfill the condition, of having M even, simultaneously if we choose
the same η value for both the cases. We point out that the factor ηN corresponds to the
flux through the system and therefore we have to keep the η value same in both the cases.
However we overcome this problem by proceeding as follows.

(a). Charges at infinity

We insert an extra charge P/q at infinity [70]. This allows us to choose the appropriate
values of this charge and thereby we can use the same η values and can get M even in
both the cases. The charge at infinity is incorporated by the vertex operator

ΞP(∞) = : ei P√
q φ(∞) : (4.5)

in the correlator of the wavefunction as in Eq. (3.58).

Thereby we write the correlator as

Ψα({z j},{wk})[P(ξ → ∞)] = 〈
N

∏
j=1

ψ(z j)
∆n j

Q

∏
k=1

σ(wk)〉α

×〈
N

∏
j=1

: ei(qn j−η)φ(z j)/
√

q :
Q

∏
k=1

: eipkφ(wk)/
√

q :: ei P√
q φ(∞) :〉,

(4.6)

which is evaluated to provide the state as

Ψα({z j},{wk})[P(ξ → ∞)] = δ
′
n 〈

N

∏
j=1

ψ(z j)
∆n j

Q

∏
k=1

σ(wk)〉α ∏
i< j

(zi− z j)
qnin j

×∏
i 6= j

(zi− z j)
−ηni ∏

j
(ξ − z j)

Pn j ∏
i, j
(wi− z j)

pin j ∏
i< j

(wi−w j)
pi p j/q

∏
i, j
(wi− z j)

−η pi/q

= δ
′
n 〈

N

∏
j=1

ψ(z j)
∆n j

Q

∏
k=1

σ(wk)〉α ξ
P(N−P)/q

∏
i< j

(zi− z j)
qnin j ∏

i 6= j
(zi− z j)

−ηni

×∏
i, j
(wi− z j)

pin j ∏
i< j

(wi−w j)
pi p j/q

∏
i, j
(wi− z j)

−η pi/q

∝ δ
′
n 〈

N

∏
j=1

ψ(z j)
∆n j

Q

∏
k=1

σ(wk)〉α ∏
i< j

(zi− z j)
qnin j ∏

i6= j
(zi− z j)

−ηni

×∏
i, j
(wi− z j)

pin j ∏
i< j

(wi−w j)
pi p j/q

∏
i, j
(wi− z j)

−η pi/q,

(4.7)
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where the 〈· · · 〉α part remains the same as given in Sec. 3.3 in Eq. (3.58). Here δ ′n = 1 if
the total number of particles is

M =

(
ηN−P−∑

Q
k=1 pk

)
q

(4.8)

and δ ′n = 0 otherwise. Therefore, with η = 1, we take the number of particles M = N/2
for all the cases of the presence and of the absence of anyons in the states and thereby
choose appropriate P values. We note that the analytical form of the state in Eq. (4.7) is
similar to those in Eqs. (3.59) and (3.62) apart from the particle numbers in the system.

We present the density profiles of the anyons in Fig. 4.1 and in Fig. 4.2 with N = 112
by placing the anyons in the bulk and sufficiently separated from one another. We take
the choices of two quasiholes in Fig. 4.1 (a) [with P =−1], two quasielectrons in Fig.
4.1 (c) [with P = −2], one quasihole-one quasielectron in Fig. 4.1 (e) [with P = 0],
four quasiholes in Fig. 4.2 (a) [with P =+1], four quasielectrons in Fig. 4.2 (c) [with
P =+2], and two quasiholes-two quasielectrons in Fig. 4.2 (e) [with P = 0]. We have
P = 0 always for the case of the absence of anyons in the state. We represent the particle
densities of the lattice sites by the colorbar and estimate an errorbar of size 10−4 arising
due to the Monte-Carlo simulations.

We find that the anyons are screened well with a radii of a few lattice constants, and the
density profiles vary with the distance from the anyons. We note that the non-zeros values
of P give rise to the edge effects in Fig. 4.1 (a), (c) and in Fig. 4.2 (a), (c). The plots show
that these do not hamper the bulk properties and hence the anyons remain unaffected. We
speculate that if a quasihole or a quasielectron approaches a lattice site then it increases
the probability of that lattice site respectively to be unoccupied or to be occupied.

Intuitively we can think of the edge effects, arising from the charge at infinity, as
follows. We are keeping the particle numbers to be fixed as M in both the cases of the
presence and of the absence of anyons in the systems. Now when we have the quasiholes
then we want to create the deficiency of the particles locally. That is we want to expel
the particles from the vicinity of the quasihole positions. Therefore these particles reside
around the edge which creates the edge effects. In the opposite manner if we have the
quasielectrons then we want to accumulate the particles locally. That is we want to attract
the particles at the vicinity of the quasielectron positions. And therefore we draw the
particles from the edge which is responsible for the edge effects. Now when we have an
equal number of quasiholes and quasielectrons in the system then the particles which are
expelled from the vicinity of the quasihole positions, are accumulated in the vicinity of
the quasielectron positions and thereby making no edge effects.

4.1.2 Charges of anyons

We note the anyon charges are expected to be

pk

q
, with pk =±

1
2
. (4.9)
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Experimental measurements of the quasihole charges in the continuum are found in Refs.
[21, 183, 187, 234, 55]. Thereby it is indispensable to investigate if the anyons fetch
similar charges in the lattice models also.

We take the standard charge of a fermionic particle to be −1 and inscribe the excess
charge of the kth anyon, elucidated to be the sum of minus the density profile ρ(zi) over a
circular region of radius r around the anyon, as

Qk(wk) =−∑
i

ρ(zi), with |zi−wk| ≤ r, (4.10)

where k ∈ {1,2, ....,Q} and ρ(zi) is defined in Eq. (4.2). The charge Q of the anyon is
defined to be the value that the total excess charge converges to for large r, when the
region is far from the edge and also far from any other anyon in the system.

We show the excess charges of the anyons as a function of the radial distances from the
anyon positions in Fig. 4.1 and in Fig. 4.2. We display the excess charges corresponding
to the choices of two quasiholes in Fig. 4.1 (b), two quasielectrons in Fig. 4.1 (d),
one quasihole-one quasielectron in Fig. 4.1 (f), four quasiholes in Fig. 4.2 (b), four
quasielectrons in Fig. 4.2 (d), and two quasiholes-two quasielectrons in Fig. 4.2 (f). We
note that the anyon charges approach the valuesQ'±0.25 up to an errorbar of size 10−4

arising from the Monte-Carlo simulations.

These results also confirm that the charges at infinity, and thereby the edge effects,
do not affect the anyon properties. Thereby we claim the anyons to be the Ising anyons
and also infer that the quasielectrons behave as similar to the quasiholes. Moreover the
density profiles of the quasiholes and the quasielectrons are very similar except for the
sign, as evident from the plots of ∑k Qk in Fig. 4.1 (f) and in Fig. 4.2 (f).

4.2 Fractional braiding statistics of anyons

In Sec. 4.1 we have found that the anyons are screened well and exhibit proper charges.
These license us to compute the braiding properties of the anyons. We employ Monte-
Carlo simulations and take n j ∈ {0,1}, η = 1, and q = 2 in the anyonic lattice Moore-
Read states, as defined in Sec. 3.3 in Eqs. (3.59), (3.62).

While braiding, we adiabatically circulate one anyon at position wk around another
anyon at position w j, where j ∈ {1, ...,Q}, k ∈ {1, ...,Q} and j 6= k, along a closed path
Γ. Therefore the normalized state picks up a unitary phase matrix and is transformed as
[31, 77]

|Ψα〉 −→ γAγMγB|Ψα〉, (4.11)

where we have three contributions in the story as follows.

4.2 Fractional braiding statistics of anyons 43



We have the Aharonov-Bohm phase γA which arises when a charged particle circulates
in a background magnetic field, the monodromy matrix γM which comes from the analytic
continuation of the states and the Berry matrix

γB = eiθB (4.12)

with the elements

[
θB
]

αβ
= i

Q

∑
k=1

∮
Γ

(
〈Ψα |

∂Ψβ

∂wk
〉dwk + 〈Ψα |

∂Ψβ

∂ w̄k
〉dw̄k

)
, (4.13)

where

α,β ∈ {I,ψ} (4.14)

for our case with two and with four anyons in the states.

Now Bonderson et al. in Ref. [31] has shown that, in the continuum as long as the
quasiholes are sufficiently separated from one another, if the conformal blocks of the
states possess matrix elements which are independent of the quasihole positions, and also
if the matrix is diagonal in the basis spanned by the conformal blocks then the Berry
matrix becomes trivial. And the quasihole braiding statistics can be read off directly
from the monodromy matrix alone. This simply means that the overlap matrix of the
degenerate states should satisfy the above conditions to get the Berry matrix proportional
to the identity matrix with an Abelian phase factor called the Aharonov-Bohm phase
which comes due to the circulation of the quasihole in the background magnetic field.

When a particle of charge q′ circulates in a magnetic field B through a closed loop of
area A, then the particle picks up a phase factor

e−2πiq′BA/hc, (4.15)

which is known as the Aharonov-Bohm phase, where h is the Planck’s constant and c is
the speed of light in free space.

We investigate the aforesaid conditions for the case of the anyons in the lattice systems.
We evaluate the braiding statistics for both the quasiholes and the quasielectrons. We
inscribe the Berry matrix elements from Eq. (4.13) to circulate the kth anyon as

[
θB
]

αβ
= i

Q

∑
k=1

∮
Γ

〈Ψα |
∂Ψβ

∂wk
〉dwk + c.c., (4.16)

where c.c. denotes the complex conjugate of the first term and we use

|Ψα〉=
1

Cα
∑
n

Ψα |n〉 and |Ψβ 〉=
1

Cβ
∑
n′

Ψβ |n′〉, with 〈n|n′〉= δnn′ . (4.17)
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Therefore we write

〈Ψα |
∂Ψβ

∂wk
〉= ∑

n

Ψ̄α

Cα

∂

∂wk

(
Ψβ

Cβ

)

=
∂

∂wk

(
∑
n

Ψ̄α

Cα

Ψβ

Cβ

)
−∑

n

Ψβ

Cβ

∂

∂wk

Ψ̄α

Cα

=
∂

∂wk

(
1

CαCβ
∑
n

Ψ̄αΨβ

)
− 1

CαCβ
∑
n

Ψβ

∂ Ψ̄α

∂wk
− 1

Cβ
∑
n

Ψ̄αΨβ

∂

∂wk

(
1

Cα

)
.

(4.18)

We have chosen the states to be normalized. Now if we can show that the states are
orthogonal, that is if we can show

〈Ψα |Ψβ 〉= δαβ (4.19)

then we can write Eq. (4.18) as

〈Ψα |
∂Ψβ

∂wk
〉= ∂

∂wk
δαβ −

1
CαCβ

∑
n

Ψβ

∂ Ψ̄α

∂wk
−Cαδαβ

∂

∂wk

(
1

Cα

)

=−Cαδαβ

∂

∂wk

(
1

Cα

)
,

(4.20)

since Ψ̄α depends only on w̄k and therefore Ψ̄α is independent of wk.

Hence we can write the Berry matrix elements from Eq. (4.16) as

[
θB
]

αβ
=−i

∮
Γ

Cαδαβ

∂

∂wk

(
1

Cα

)
dwk + c.c.

= iδαβ

∮
Γ

1
Cα

(
∂Cα

∂wk

)
dwk + c.c.

= iδαβ

∮
Γ

Idwk + c.c.,

(4.21)

where we have

I =
1

Cα

(
∂Cα

∂wk

)
=

∂ ln(Cα)

∂wk
. (4.22)

Now if we can show that Cα , and hence ln(Cα), is periodic in wk then we have γB is
equal to the identity matrix, that is we have[

γB
]

αβ
= δαβ . (4.23)
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Under this circumstance, the braiding statistics of the anyons can be evaluated directly
from the γM alone. Also the braiding statistics will be the same as the braiding statistics
in the continuum if we can show

Cα =Cβ . (4.24)

Therefore we collect the sufficient conditions in the lattices in correspondence to the
sufficient conditions in the continuum [31] as follows.

Conditions in the continuum Conditions in the lattice
(i). We require to show that the de-
generate states |Ψα〉 and |Ψβ 〉 are
orthogonal.

(i). We have to show that
|∑ni Ψ∗αΨβ | = Cδαβ up to ex-
ponentially small finite size effects
and C is a constant.

(ii). We require that the norm of the
states are independent of the quasi-
hole positions.

(ii). We have to show that Cα is pe-
riodic when we move one anyon
through a closed loop.

(iii). We require that the degenerate
states |Ψα〉 and |Ψβ 〉 have the same
norm.

(iii). We have to show that Cα =Cβ

up to exponentially small finite size
effects. However this condition is
already included in the condition as
written in (i) in this column.

We extensively study the braiding properties of two anyons and of four anyons in the
systems as follows.

4.2.1 Two anyons scenario

We incorporate either two quasiholes or two quasielectrons or one quasihole-one quasi-
electron in the state. We compute the Berry matrix, the monodromy matrix and the
Aharonov Bohm phase as follows.

(a). Berry matrix

We have only one state in this case as Eq. (3.59). Hence only the condition (ii) is to
be satisfied. And the Berry matrix becomes the Berry phase in this case. We place the
anyons in the bulk of the system and keep them isolated from one another. We circulate
one anyon, say the kth one where k ∈ {1,2}, around one lattice site through a closed path
while keeping the other anyon fixed in its initial position. We choose the path to be along
the midway in the lattice plaquette and expect the same outcome to hold if we circulate
the anyon through any other closed path as well. We show the path in Fig. 4.3 (a) where
proper choices of the anyon charges correspond to the anyon configurations as depicted
in Fig. 4.1 (a), (c), (e).
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Figure 4.3.: In (a): We picture the lattice sites and the anyons by the black circles and the blue
diamonds, respectively. Proper choices of the charges of the anyons lead to the
configurations as shown in Fig. 4.1 (a), (c), (e). We place the anyons in the bulk and
keep the anyons sufficiently separated from one another. We circulate one anyon
around one lattice site through a closed loop along the path midway in the lattice
plaquette, while keeping the other anyon position fixed in its initial position. We take
the lattice size to be N = 96. In (b), (c), (d): We plot the quantity P from Eq. (4.25)
as a function of the different moves, that is the position l, of the moving anyon for the
cases of two quasiholes, two quasielectrons, and one quasihole-one quasielectron in
(b), (c), and (d) respectively. For all the cases, we find that the quantity P varies with
the period of the lattice up to some finite size effects arising from the Monte-Carlo
simulations.

We study the variation of the square of the norm C2 of the state with respect to the
moving anyon positions. Therefore we define the following quantity to investigate as

P=
C20
C2l

, (4.25)

whereCl andC0 denote the normalization constants of the anyonic state when the moving
anyon is at position l and is at its initial position l = 0, respectively. Therefore the quantity

4.2 Fractional braiding statistics of anyons 47



P denotes the inverse ratio between the overlaps at the lth and at the l = 0th positions of
the anyon.

We display the above-mentioned quantity P as a function of the different moves l of
the circulating anyon in Figs. 4.3 (b), (c), (d) for the cases of the two quasiholes, two
quasielectrons, and one quasihole-one quasielectron in the state respectively. We find the
periodic variations of the quantity P with different positions of the circulating anyon up
to some finite size effects appearing due to the Monte-Carlo simulations. Hence we write
the Berry phase γB = 1.

(b). Monodromy matrix

The counter-clockwise exchange of the two anyons at positions wk and w j gives rise to
the monodromy matrix which is just a phase factor here. This analytic continuation can
be obtained straightforwardly from the anyonic state in Eq. (3.59) at face value. We find
the statistical phase to be

γM = e
iπ
[

p j pk
q −

1
8

]
. (4.26)

(c). Aharonov-Bohm phase

Counterclockwise circulation of the anyon at position wk around a lattice site gives rise to
the phase from Eq. (3.59) as

γA = e−2πipk/q . (4.27)

This is interpreted as the Aharonov-Bohm phase of a particle with charge pk/q, which is
circulating around a closed loop and is enclosing a background magnetic flux of unity.

Investigations of the braiding properties above show that the exchange of two anyons
gives rise to the phase factors only. It might seem that the anyons are of Abelian in nature.
However we see in the next section that when we have four anyons in the system then
the ground state is degenerate and the non-Abelian nature of the anyons are revealed, as
expected for the Ising anyons in the Moore-Read fractional quantum Hall state.

4.2.2 Four anyons scenario

We incorporate either four quasiholes or four quasielectrons or two quasiholes-two
quasielectrons in the states. We compute the Berry matrix, the monodromy matrix and
the Aharonov Bohm phase as follows.
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Figure 4.4.: In (a): We keep the anyons, as pictured by the light green pluses, fixed in the bulk
and place them sufficiently separated from one another. We increase the lattice size
N by adding more sites. We denote different lattice sizes with different symbols as
N = 52, as pictured by the black circles, as N = 60, as pictured by the red squares
added, as N = 68, as pictured by the pink hexagons added, as N = 76, as pictured by
the dark green down pointing triangles added, as N = 80, as pictured by the violet
up pointing triangles added, as N = 88, as pictured by the orange diamonds added,
and as N = 96, as pictured by the blue right pointing triangles added. Proper choices
of the anyon charges lead to the configurations as shown in Fig. 4.2 (a), (c), (e). In
(b), (c), (d): We plot the quantities O, by circles, and N , by squares, as defined in
Eq. (4.29) as a function of the lattice size N for the cases of the four quasiholes, four
quasielectrons, and two quasiholes-two quasielectrons in the system in (b), (c), (d)
respectively. We note that the quantities O and N in all the plots follow exponential
decays. In the insets we show the data in the semi-log scale where the linear fits
confirm the exponential decay of the quantities. These imply that the states ΨI and
Ψψ are orthogonal and have the same norm in the thermodynamic limit N → ∞,
where the errobars, arising from the Monte-Carlo simulations, are small.

(a). Berry matrix

We have two degenerate states, namely ΨI and Ψψ , in this case. Hence the Berry matrix
elements are given by Eq. (4.13) where we have

α,β ∈ {I,ψ}. (4.28)
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Figure 4.5.: In (a): We picture the lattice sites and the anyons by the black circles and the blue
diamonds, respectively for the lattice size of N = 96. We note that the proper choices
of the charges of the anyons lead to the configurations as shown in Fig. 4.2 (a), (c),
(e). We place the anyons in the bulk and keep them sufficiently separated from one
another. We circulate one anyon around one lattice site through a closed path along
the midway in the lattice plaquette while keeping the other anyon positions fixed in
their initial positions. In (b), (c), (d), (e), (f), (g): We plot the quantities PI and Pψ

from Eq. (4.31) as a function of the different moves l of the moving anyon for the
cases of four quasiholes, four quasielectrons, and two quasiholes-two quasielectrons
in (b)-(c), (d)-(e), (f)-(g) respectively. For all the cases, we note that the quantities PI

and Pψ vary with the period of the lattice up to some finite size effects arising from
the Monte-Carlo simulations.
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In order to investigate conditions (i) and (iii) we inspect two quantities, namely the overlap
O of the two states and the ratioN of the respective norms of the two states, as a function
of the systems size N. Henceforth we define

O =

∣∣∣∑ni Ψ∗I Ψψ

∣∣∣√
∑ni |ΨI|2 ∑ni |Ψψ |2

and N = 1− ∑ni |ΨI|2

∑ni |Ψψ |2
. (4.29)

We place the anyons in the bulk and keep them sufficiently separated from one another.
We increase the lattice size by putting more lattice sites in the system as displayed in Fig.
4.4 (a) where proper choices of the anyon charges lead to the anyon configurations as in
Figs. 4.2 (a), (c), (e).

We plot O and N as a function of the system size N in Figs. 4.4 (b), (c), (d) for the
cases of four quasiholes, four quasielectrons, and two quasiholes-two quasielectrons in the
states respectively. We find that each of the quantities O and N exhibits an exponential
decay as a function of the lattice size. The insets show the data in the semi-log scale.
A linear fit in the inset for each case dictates the decay as e−λN , where λ is the decay
coefficient. For the case of four quasiholes, the decay coeeficient is λ = 0.0599 for O
and is λ = 0.0608 for N . For the case of four quasielectrons, the decay coeeficient
is λ = 0.0263 for O and is λ = 0.0271 for N . For the case of two quasiholes-two
quasielectrons, the decay coeeficient is λ = 0.0416 for O and is λ = 0.0422 for N .

Therefore in the thermodynamic limit N → ∞, the two states are expected to be
orthogonal with the same norm up to some finite size effects arising due to the Monte-
Carlo simulations. This provides the license to inscribe∣∣∣∑

ni

Ψ
∗
αΨβ

∣∣∣= Cδαβ +O
(

e−λN
)
, (4.30)

where C is a constant and O
(

e−λN
)

is a contribution which exponentially decays with
the system size and in the thermodynamic limit, this factor vanishes. Henceforth, the
overlap matrix becomes the identity matrix.

Now to check the condition (ii) we use the same formalism as we have done in the case
of the two anyons. We place the anyons in the bulk by isolating them from one another.
We circulate one anyon, say the kth one with k ∈ {1,2,3,4}, around a lattice site through
a closed loop by keeping the other anyons fixed to their initial positions. We choose the
path to be along the midway in the lattice plaquette and expect the same outcome to hold
if we circulate the anyon through any other closed path as well. We show the path in Fig.
4.5 (a) where proper choices of the anyon charges lead to the anyon configurations as
depicted in Fig. 4.2 (a), (c), (e).

4.2 Fractional braiding statistics of anyons 51



We note that since the overlap matrix is diagonal for sufficiently large N, therefore it is
enough to investigate the diagonal elements only, that is it is sufficient to study the case
for α = β . We define the following quantity to inspect as

Pα =
C2

α0

C2
αl

with α ∈ {I,ψ}, (4.31)

where Cαl and Cα0 denote the normalization constants when the circulating anyon is at
the lth position and at its initial position l = 0, respectively.

In Figs. 4.5 (b)-(c), (d)-(e), (f)-(g) we show the quantities PI and Pψ as a function of
the different moves l, respectively for the cases of four quasiholes, four quasielectrons
and two quasiholes-two quasielectrons in the systems. We find that the quantities PI and
Pψ vary with the period of the lattice up to some numerical uncertainties arising from the
Monte-Carlo simulations and from the finite size effects. Therefore we inscribe the Berry
matrix contribution as

γB = Î, (4.32)

where Î is the identity matrix.

(b). Monodromy matrix

We investigate the analytic continuation of the states in Eqs. (3.62) at face value and
thereby compute the monodromy matrix γM. We choose the jth and kth anyons, where
j,k ∈ {1,2,3,4} symbolizes the anyons, to be exchanged in the counter-clockwise fashion
while keeping the other anyons fixed at their positions. The states ΨI and Ψψ are
transformed under this exchange w j� wk as follows.

We have for w1� w2 or equivalently for w3� w4,

ΨI 7→ e
iπ
[

p j pk
q −

1
8

]
ΨI and Ψψ 7→ e

iπ
[

p j pk
q −

1
8

]
i Ψψ

where j = 1(3), k = 2(4),
(4.33)

and we have for w2� w3 or equivalently for w1� w4,

ΨI 7→ e
iπ
[

p j pk
q + 1

8

](
ΨI− i Ψψ√

2

)
and Ψψ 7→ e

iπ
[

p j pk
q + 1

8

](
−i ΨI +Ψψ√

2

)
where j = 2(1), k = 3(4),

(4.34)

and we have for w1� w3 or equivalently for w2� w4,

ΨI 7→ e
iπ
[

p j pk
q + 1

8

](
ΨI +Ψψ√

2

)
and Ψψ 7→ e

i π

[
p j pk

q + 1
8

](
−ΨI +Ψψ√

2

)
where j = 1(2), k = 3(4),

(4.35)
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where we use the � symbol to denote the exchange of two anyons in the counter-
clockwise direction.

Now the Eqs. (4.33) - (4.35) provide the monodromy matrices, under the analytic
continuation operation which transmute the states[

ΨI,Ψψ

]T
7→ γ

j�k
M

[
ΨI,Ψψ

]T
, (4.36)

as follows

γ
1�2/3�4
M = e

iπ
[

p j pk
q −

1
8

] [
1 0
0 i

]
γ

2�3/1�4
M = e

iπ
[

p j pk
q + 1

8

]
1√
2

[
1 −i
−i 1

]
γ

1�3/2�4
M = e

iπ
[

p j pk
q + 1

8

]
1√
2

[
1 −1
1 1

]
.

(4.37)

(c). Aharonov-Bohm phase

When we circulate an anyon at position wk around a lattice site then we get a phase from
Eq. (3.62) as

γA = e−2πipk/q . (4.38)

This is called as the Aharonov-Bohm phase of a particle with charge pk/q, which is
circulating around a closed loop and is enclosing a background magnetic flux of unity.

We find that the monodromy matrices, in Eq. (4.26) for two anyons and in Eq. (4.37)
for four anyons, and hence the braiding statistics of the anyons are the same as found in
the continuum for the quasiholes. The monodromy matrices in Eq. (4.37) do not commute
with each other and thereby these matrices serve as the members of the non-Abelian
braid group. This comprises the building blocks of the non-Abelian statistics of the
Moore-Read Ising anyons in the system.

4.3 Parent Hamiltonians

Till now we have analyzed the properties of the anyons in the analytical lattice Moore-
Read states. Naturally it is relevant to investigate if the states are the ground states of some
Hamiltonians. Therefore we derive the parent Hamiltonians for the states containing an
even number Q of anyons and for n j ∈ {0,1}, q≥ 2. We commence by constructing the
Hamiltonians for the states hosting quasiholes and for η = 1. Afterwards we generalize
the Hamiltonians for the case of η ≤ 1 and for the states containing quasiholes. And
afterwards we construct the Hamiltonians for the case when we have quasielectrons in
the system in addition to the quasiholes and for η ≤ 1.
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One advantage of these Hamiltonians is that the anyons can be braided by changing the
coupling strengths in the Hamiltonians since the Hamiltonians are functions of the anyon
positions. Also one can go from the lattice limit to the continuum limit by changing
the coupling strengths which are functions of η . The Hamiltonians contain few-body
interactions and are long-range.

4.3.1 Parent Hamiltonians for the states containing
quasiholes

We exploit the null fields construction [169, 64] of the underlying conformal field theory
and derive the Hamiltonians for η = 1 first and thereby generalizing the results for the
case of η < 1.

(a). Parent Hamiltonians for η = 1

We know that the states are constructed from the conformal field correlators as

Ψ({z j},{wk}) = 〈
N

∏
j=1

Vn j(z j)
Q

∏
k=1

Wpk(wk)〉, (4.39)

which we utilize to derive the parent Hamiltonians by using the null fields of the consid-
ered conformal field theory. Null field, say χ(v) at position v, has the property that the
correlator vanishes when we insert the null field in the correlator of the primary fields.
That is we have

〈
N

∏
j=1

Vn j(z j)χ(v)
Q

∏
k=1

Wpk(wk)〉= 0. (4.40)

The task is to rewrite Eq. (4.40) as

Λ|Ψ〉= 0, (4.41)

where Λ is the annihilation operator for the state |Ψ〉 and thereby parent Hamiltonian
becomes

H = Λ
†
Λ. (4.42)
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Explicit derivations of the null fields in this case, by following Ref. [69], are done in
the Appendix-B. And we derive the following q number of operators, in the Appendix-C,
which serve as the annihilation operators for the states as

Λ
0 = ∑

i
di, Λ

p
i

p=1,...,q−2
= ∑

j( 6=i)

1
(zi− z j)p d jni,

Λ
q−1
i = ∑

j( 6=i)

[
d jni

(zi− z j)q + ∑
h( 6=i)

[qn j−1]dhni

(zi− zh)q−1(zi− z j)

]
+∑

j
∑

h( 6=i)

p jdhni

(zi− zh)q−1(zi−w j)

(4.43)

and thereby we have

Λ
a
i |Ψ

η=1,qh
α 〉= 0 with a ∈ {0,1, ...,q−1}, (4.44)

where ’qh’ stands for the quasiholes. Here d j is the hardcore bosonic or fermionic
annihilation operators respectively for q odd or q even, and is acting on the jth lattice site.
The particle number operator acting at the jth lattice site is defined as

n j = d†
j d j. (4.45)

We write these operators in the matrix form with respect to the basis (|0〉, |1〉) acting
on the jth lattice site as

d j = S
[

0 1
0 0

]
, d†

j = S
[

0 0
1 0

]
, n j =

[
0 0
0 1

]
, with S = (−1)(q+1)∑

j−1
k=1 nk

as the sign factor. We inscribe the following Hermitian operators as the parent Hamiltoni-
ans for the states as

H =
N

∑
i=1

q−1

∑
a=0

Λ
a†
i Λ

a
i . (4.46)

We note that the Hamiltonians are positive semi-definite because their eigenvalues are all
positive including zero.

(b). Parent Hamiltonians for η < 1

We utilize the annihilation operators in Eq. (4.43) to derive the parent Hamiltonians for
the case of η < 1. We note that the states with η < 1, which we denote here as |Ψη ,qh

α 〉,
have the particle number

M =

(
ηN−∑

Q
k=1 pk

)
q

. (4.47)
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And the states with η = 1 and a charge P/q at infinity contain

M =

(
N−P−∑

Q
k=1 pk

)
q

(4.48)

number of particles. Therefore the particle numbers in both the states will be equal if we
take

P = N(1−η). (4.49)

In the Appendix-C we find that the operators in Eq. (4.43), which annihilate the states
|Ψη=1,qh

α 〉, are also the annihilation operators for the states with the charge at infinity
provided the following condition is fulfilled as

P >
(
−2q−

Q

∑
k=1

pk +Q
)
. (4.50)

Now with the choice

P = N(1−η), (4.51)

we obtain the restriction on the η values as

η < 1+
1
N

(
2q+

Q

∑
k=1

pk−Q
)
. (4.52)

Hence in the thermodynamic limit N→ ∞ the parent Hamiltonians, as provided below,
are valid for η ≤ 1.

To obtain the Hamiltonian, we note that the state |Ψη ,qh
α 〉 differs from the state |Ψη=1,qh

α 〉
by the factor

∏
j 6=l

(zl− z j)
(η−1)nl

(4.53)

and thereby we write the following term as

Θ = ∏
l

(
∏
j( 6=l)

(zl− z j)
(η−1)

)nl

= ∏
l

γ
nl
l with γl = ∏

j 6=l
(zl− z j)

(η−1). (4.54)

Hence we have

Θ|Ψη ,qh
α 〉= |Ψη=1,qh

α 〉. (4.55)
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Now from Eq. (4.44) as we have

Λ
a
i |Ψ

η=1,qh
α 〉= 0, (4.56)

and therefore we write

Θ
−1

Λ
a
i Θ|Ψη ,qh

α 〉= 0 with a ∈ {0,1, ....,q−1}. (4.57)

We note that

Θ
−1diΘ = ∏

l
γ
−nl
l di ∏

m
γ

nm
m = γ

−ni
i diγ

ni
i = γidi (4.58)

and therefore we write the following q operators

Λ
′a
i = Θ

−1
Λ

a
i Θ (4.59)

which annihilate the state |Ψη ,qh
α 〉. That is we have

Λ
′a
i |Ψ

η ,qh
α 〉= 0 with a ∈ {0,1, ...,q−1}. (4.60)

We derive the explicit form of the Λ
′a
i operators as

Λ
′0 = ∑

i
γidi, Λ

′p
i

p=1,...,q−2
= ∑

j(6=i)

1
(zi− z j)p γ jd jni,

Λ
′q−1
i = ∑

j( 6=i)

[
γ jd jni

(zi− z j)q + ∑
h(6=i)

[qn j−1]γhdhni

(zi− zh)q−1(zi− z j)

]
+∑

j
∑

h( 6=i)

p jγhdhni

(zi− zh)q−1(zi−w j)
.

(4.61)

Therefore we obtain the parent Hamiltonians for η ≤ 1 as

H =
N

∑
i=1

q−1

∑
a=0

Λ
′a†
i Λ

′a
i . (4.62)

4.3.2 Parent Hamiltonians for the states containing
quasielectrons

We exploit here the annihilation operators in Eq. (4.61) for the states |Ψη ,qh
α 〉, containing

quasiholes only, to derive the parent Hamiltonians for the states containing at least one
quasielectron, which we denote as |Ψη ,qe

α 〉, with ’qe’ standing for the quasielectrons.
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We have the particle number for the states |Ψη ,qh
α 〉 as

Mqh =

(
ηqhN−∑k pqh

k

)
q

(4.63)

and for the states |Ψη ,qe
α 〉 as

M =

(
ηN−∑k pk

)
q

. (4.64)

Here we take the number of lattice sites N to be the same and ηqh is for the state with
quasiholes only and pqh

k is the charge of the kth quasihole. Now to achieve the same
number of particles for both the sates, that is to have

Mqh = M, (4.65)

we find the following condition to be satisfied as

η = ηqh−
1
N

(
∑
k

pqh
k −∑

k
pk

)
, (4.66)

with the restriction on ηqh values as given in Eq. (4.52). Hence in the thermodynamic
limit N→ ∞ we have here η ≤ 1.

Now, to derive the Hamiltonian, we note that

T |Ψη ,qe
α 〉= |Ψη ,qh

α 〉 (4.67)

where we have

T = ∏
i

β
ni
i θ

ni
i with βi = ∏

j 6=i
(zi− z j)

(η−ηqh) and θi = ∏
j
(w j− zi)

(pqh
j −p j). (4.68)

We set here ηqh = 1 and recall the annihilation operators for the states |Ψη=1,qh
α 〉 from

Eq. (4.43) as

Λ
a
i |Ψ

η=1,qh
α 〉= 0, a ∈ {0,1, ...,q−1}. (4.69)

We rewrite this as

T−1
Λ

a
i T |Ψη ,qe

α 〉= 0. (4.70)

Therefore we define the annihilation operators for the state |Ψη ,qe
α 〉 as

Λ
′′a
i = T−1

Λ
a
i T such that Λ

′′a
i |Ψ

η ,qe
α 〉= 0, a ∈ {0,1, ...,q−1}. (4.71)
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We utilize the expressions of Λa
i in Eq. (4.43) and derive the following q number of

annihilation operators as

Λ
”0 = ∑

i
βiθidi , Λ

”p
i

p=1,..,q−2
= ∑

j( 6=i)

β jθ jd jni

(zi− z j)p ,

Λ
”q−1
i = ∑

j( 6=i)

[
β jθ jd jni

(zi− z j)q + ∑
h( 6=i)

[qn j−1]βhθhdhni

(zi− zh)q−1(zi− z j)

]
+∑

j
∑

h( 6=i)

p jβhθhdhni

(zi− zh)q−1(zi−w j)

(4.72)

Therefore we obtain the parent Hamiltonians for η ≤ 1 as

H =
N

∑
i=1

q−1

∑
a=0

Λ
′′a†
i Λ

′′a
i . (4.73)

We have tested numerically that the parent Hamiltonians, as given in this section, have
unique ground state when we have two anyons and have two degenerate ground states
when we have four anyons in the system. These also signify the non-Abelian nature of
the anyons. The parent Hamiltonians, we have derived, are non-local and contain up to
five-body interaction terms. These may be a starting point to find simpler Hamiltonians
with practically the same ground state physics.

4.4 Anyons in the Kapit-Mueller model

Kapit and Mueller proposed a lattice model [119, 120] which realizes the fractional
quantum Hall physics at appropriate filling factors. The model shows an exact equivalence
between a realistic lattice system and the lowest Landau level of the fractional quantum
Hall effect. That is the lattice model is defined with the same ground state structure
as the ground state of the continuum and thereby the model becomes a good starting
point for the numerical studies of the fractional quantum Hall problems. It is interesting
that the fractional quantum Hall ground states physics exist in the lattice systems which
have no direct continuum analog. The model Hamiltonian is relatively simple and is
computationally tractable. It consists of the hopping terms and of the on-site hardcore
interactions.

So far we have found the shapes and the charges of the anyons with the analytical lattice
Moore-Read states. One may speculate that if these anyonic properties are very specific
to the analytical states or not. Therefore we compare the anyons in the Kapit-Mueller
model to the anyons in the analytical states. We take the filling factor q = 1 for which
the ground state of the model is known to be in the same topological phase as that of the
bosonic Moore-Read state.
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Figure 4.6.: In (a), (c): We mark the N = 24 lattice sites by the black circles and symbolize
the quasihole, and the quasielectron, by the green star, and by the black square
respectively. We place the potential +V and the potential −V on two different lattice
sites to trap one quasihole and one quasielectron respectively. The density profile
ρ(zi), defined as the particle density difference between the states in the presence and
in the absence of the anyons in the systems, is plotted with colorbar for the anyons in
the Kapit-Mueller model (4.74) in (a) by using Eq. (7.7) and for the anyons in the
Moore-Read state (3.59) in (c) by using Eq. (4.2). In (b), (d): We plot the excess
charge distributions Qk, as defined in (4.10), as a function of the radial distances
from the anyon positions in (b) for the Kapit-Mueller model and in (d) for the lattice
Moore-Read state. We mark the regions, within which we compute the excess
charges, by the green circles in (a) and in (c). We find that the quasiholes and the
quasielectrons are trapped with the charges � 0.5 and �−0.5, respectively. We note
that the excess charge distributions in (b) and in (d) are similar.

4.4.1 The Kapit-Mueller Hamiltonian

We write the Hamiltonian [119, 120] on a two-dimensional square lattice with open
boundary conditions as

H0 =−∑
j,k
Jjkeiφ jkc†jck+H.c. (4.74)
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The creation and the annihilation operators of the hard-core bosons at the kth lattice site
at position zk are denoted by c†

k and ck respectively. We take unit lattice spacing and we
define

ξ jk = z j− zk and a = Re(ξ jk), b = Im(ξ jk). (4.75)

Due to the uniform background magnetic field B we have the Peierls phase factor as

iφ jk =−
πφ

2

(
z jξ
∗
jk− z∗jξ jk

)
, (4.76)

where φ is the density of flux quanta φ0 = h/e, where h is the Planck’s constant and e
is the electric charge, through each lattice plaquette. This flux is only defined modulo 1
and having a flux quanta through each lattice plaquette is gauge invariant to no flux at all.
Therefore we need 0≤ φ ≤ 1 and we define φ = p/m as the ratio of two relatively prime
integers.

We note that if we take J jk =−J, with J > 0, and only the nearest neighbor couplings
in Eq. (4.74) then in the non-interacting case, that is in the single particle picture, the
Hamiltonian H0 becomes the Hoftstadter model. The Peierls phase factor in Eq. (4.76) is
written in the symmetric gauge choice of

~A =
B
2

(
xŷ− yx̂

)
(4.77)

but one can choose any other gauge as well.

We have the Gaussian hopping in Eq. (4.74) as

J jk = G(ξ jk)exp
(
− π

2
(1−φ)|ξ jk|2

)
with G(ξ jk) = (−1)1+a+b+ab. (4.78)

This particular choice of the hopping couplings gives rise to the robust fractional quantum
Hall states.

One promising experimental realization of the model is with ultra-cold atoms in optical
lattices. This allows to investigate larger magnetic fluxes than is achievable with the
real magnetic fields. Though the long range hopping are difficult to arrange but as J jk
exhibits a Gaussian fall, therefore only the nearest and next-nearest neighbor couplings
are sufficient when φ is small.

4.4.2 Creation of anyons in the ground state

We modify the Hamiltonian H0, as in Eq. (4.74), to trap the anyons in the ground state.
We add a potential term HV to the Kapit-Mueller Hamiltonian to trap the quasiholes and
the quasielectrons. We provide energy penalties to the lattice sites to be occupied for the
quasiholes and to be unoccupied for the quasielectrons respectively.
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Figure 4.7.: In (a), (c): We mark the N = 24 lattice sites by the black circles and symbolize
the quasiholes, and the quasielectrons, by the green stars, and by the black squares
respectively. We place two potentials each of +V and two potentials each of −V on
four different lattice sites to trap two quasiholes and two quasielectrons respectively.
The density profile ρ(zi), defined as the particle density difference between the
states in the presence and in the absence of the anyons in the system, is plotted with
colorbar for the anyons in the Kapit-Mueller model (4.74) in (a) by using Eq. (7.7)
and for the anyons in the Moore-Read state (3.62) in (c) by using Eq. (4.2). In (b),
(d): We plot the excess charge distributions Qk, as defined in (4.10), as a function
of the radial distances from the anyon positions in (b) for the Kapit-Mueller model
and in (d) for the lattice Moore-Read state. We mark the regions, within which we
compute the excess charges, by the green circles in (a) and in (c). We find that the
quasiholes and the quasielectrons are trapped with the charges � 0.5 and �−0.5,
respectively. We note that the excess charge distributions in (b) and in (d) are similar.

We define the following operators as

HV =Vna−Vnb and HV =Vna+Vnb−Vnc−Vnd, (4.79)

where

nk = c†kck (4.80)
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is the number operator at the kth lattice site and V is the strength of the potential at the
kth lattice site, which is sufficiently larger than the hopping strengths. The first operator
in Eq. (4.79) traps one quasihole-one quasielectron and the second operator traps two
quasiholes-two quasielectrons.

4.4.3 Density profiles and charges of anyons

We define the density profiles of the anyons as

ρ(zi) = [〈n(zi)〉H0+HV −〈n(zi)〉H0 ], (4.81)

where

〈n(zi)〉H0+HV and 〈n(zi)〉H0 (4.82)

are the particle densities at the ith lattice site in the presence and in the absence of the
anyons in the systems respectively. The excess charges and the charges of the anyons are
computed by using Eq. (4.10).

We take the lattice size to be N = 24 and the particle number as M = 4. Therefore we
have φ = 1/6 and the relation

M
φN

=
1
q
= 1, for q = 1 (4.83)

is satisfied.

We show the density profiles of anyons, by using Eq. (7.7), in Fig. 4.6 (a) and in Fig. 4.7
(a) for one quasihole-one quasielectron and for two quasiholes-two quasielectrons cases
respectively. In Fig. 4.6 (b) and in Fig. 4.7 (b) we show the excess charge distributions
of the trapped anyons as a function of the radial distances from the anyon positions. We
find that the anyons are screened well. And each quasihole exhibits the charge ' 0.5, and
each quasielectron exhibits the charge '−0.5.

In principle we can trap more anyons by adding more trapping potentials to HV in Eq.
(4.79). However we need larger lattice sizes to make sufficient spaces for the anyons.
And we may not be able to achieve those systems sizes by the exact diagonalizations
studies.

We compare our analytical bosonic Moore-Read states, from Eqs. (3.51), (3.62), (3.62),
on the same lattice. We take N = 24, M = 4, q = 1 and hence we have η = 1/6 which
satisfy the condition

M
ηN

=
1
q
= 1. (4.84)

We note the equivalence η ≡ φ . We place the anyons on the lattice sites.
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We show the anyon density profiles, by using Eq. (4.2), in Fig. 4.6 (c) and in Fig.
4.7 (c) for one quasihole-one quasielectron and for two quasiholes-two quasielectrons
cases respectively. We display the excess charge distributions, by using Eq. (4.10), of
the trapped anyons as a function of the radial distances from the anyon positions in
Fig. 4.6 (d) and in Fig. 4.7 (d). Each of the quasiholes and each of the quasielectrons
exhibits the charge pk/q' 0.5, for pk = 1/2, and the charge pk/q'−0.5, for pk =−1/2,
respectively.

We have well-screened anyons in the system. We note from Fig. 4.6 (b), (d) and from
Fig. 4.7 (b), (d) that the density profiles and the excess charge distributions of the anyons
are very similar. These display similarities between the topological properties of the
ground state of the Kapit-Mueller model and the topological properties of the analytical
lattice Moore-Read states. We point out that the anyon density profiles and excess charge
distributions are similar but not exactly the same. The reason is that the analytical lattice
Moore-Read states containing anyons are not the exact ground states of the Kapit-Mueller
Hamiltonian with the trapping potential, that is of the Hamiltonian H0 +HV , but they
share the same topological properties. Hence our analytical states are relevant to the
Kapit-Mueller model.

4.5 Conclusions
In this chapter we have researched the properties of the non-Abelian Ising anyons in the
lattice Moore-Read states, at the Landau level filling factor 5/2, by using Monte-Carlo
simulations. We have shown that the quasielectrons can be created and can be investigated
in a similar way that of the quasiholes. Therefore we have simpler wavefunctions for
the quasielectrons, both from the analytical and from the numerical viewpoint, than the
continuum.

We have investigated the cases of two quasiholes, two quasielectrons, one quasihole-one
quasielectron, four quasiholes, four quasielectrons and two quasiholes-two quasielectrons
in the systems. By inspecting the density profiles and charges of the anyons we have
shown that the anyons are screened well and have radii up to a few lattice constants.
We find that a quasihole exhibits a charge ' 0.25 and a quasielectron carries a charge
'−0.25. This agrees with the findings for the Ising quasihole charge in the continuum.
We probe the topological properties of the systems by computing the fractional braiding
statistics of the anyons. We find that the anyons are non-Abelian and the braiding statistics
are the same as expected from the continuum. We have used the null fields construction of
the underlying conformal field theory and have derived the parent Hamiltonians for which
the analytical states are the exact ground states. We have found the degenerate ground
states for the case of the four anyons in the system which also signify the non-Abelian
nature of the anyons. The parent Hamiltonians are long-rang and contain few-body
interactions which may be a starting point to search for the local Hamiltonians with
practically the same ground state physics.

We have investigated a simpler lattice model, which is known as the Kapit-Mueller
model, and have created the quasielectrons in the same way as that of the quasiholes.
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By using exact diagonalizations we have found that the anyons in this model are well-
screened and have right charges. We have shown that the excess charge distributions and
the shapes of the anyons are similar to those in the analytical lattice Moore-Read states.
Therefore our analytical states are suitable to this experimentally relevant model.
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Anyons and Fractional
Quantum Hall Physics in
Quasicrystals and in
Fractal Lattices

5

„It is the glory of geometry that from so few
principles, fetched from without, it is able to
accomplish so much.

— Sir Isaac Newton

Interplay between the long-range order and the non-periodic structure in quasicrystals
gives rise to a wealth of intriguing phenomena [150, 152, 8, 41, 134, 135, 133, 139, 206,
114, 65, 270, 99, 231, 66], such as the existence of topological properties from higher
dimensions, and the presence of non-trivial structure on all length scales. Properties of a
system often depends strongly on the dimension of the system because of the restrictions
on the particle movements along the different directions. Fractal structures open up
the possibilities to research non-integer dimensions, such as between 0 and 2, which
constitute an intermediate regime to expect interesting physics [67, 266, 233, 254, 35,
136, 102]. The questions about the topological phases are being investigated recently [2,
179], for example the construction of the non-interacting Chern insulator models on the
fractal lattices.

In this chapter we investigate the strongly interacting topologically ordered phases
namely the fractional quantum Hall physics and the anyons in quasicrystals and in fractal
spaces. We construct the lattice fractional quantum Hall models containing anyons
and provide the analytical states and the corresponding parent Hamiltonians. We show
that the anyons are well-screened, possess right charges, and have the right braiding
properties. We find that the fractional quantum Hall physics and the anyons exist in
quasicrystals and in fractal lattices with all the Hausdorff dimensions 1≤ dimension ≤ 2.
Our findings suggest that the local structures of the fractal lattices become important than
the corresponding Hausdorff dimensions in determining the topological properties of the
fractal systems.

To study chiral topological orders one of the possibilities is to construct the fractional
Chern insulator models. Such constructions require the systems to exhibit translational
symmetry, since fractionally filled flat-bands are to be constructed and many-body Chern
numbers are to be computed. Now an important common point of the structures of the
quasicrystals and of the fractal lattices is that these lack translational symmetry. Therefore

67



it is worth to note that the construction of the fractional Chern insulator models are
not possible to realize such physics in these systems. We take the first step to use our
construction of lattice models to obtain anyons and the fractional quantum Hall physics
on such lattices to directly probe the chiral topological orders.

We show two types of quasicrystals in Sec. 5.1. In Sec. 5.2 we describe how to generate
fractal lattices and how to compute fractal dimensions with a particular example as the
Sierpinski gasket. We show in Sec. 5.3 that both type of quasicrystals host well-screened
anyons and we display the existence of well-screened anyons in fractal dimension' 1.585
on the Sierpinski gasket geometry. In one-dimensional linear system the absence of
anyons is known since the model is known to be critical. However, interestingly, we
find that anyons can exist in one dimension in fractal space. In particular we show that
the anyons and the fractional quantum Hall physics can be obtained in all dimensions
1 ≤ dimension ≤ 2 and even we show that anyons can be present in dimension less
than one such as in dimension ln(4)/ ln(5) ' 0.86. Our investigations reveal that the
lattice points distributions are more important in hosting the anyons and in displaying
the fractional quantum Hall physics rather than the Hausdorff dimensions of the fractal
spaces. We derive the braiding statistics of the anyons in Sec. 5.4 and show that the
analytical states are topological in quasicrystals and in fractal spaces. We construct parent
Hamiltonians of our lattice models in Sec. 5.5, for which the analytical states are the
exact ground states, and Sec. 5.6 draws the conclusions. This chapter is based on parts of
the following Refs. [57, 180]:

[1] : Sourav Manna*, Biplab Pal*, Wei Wang* and Anne E. B. Nielsen, "Anyons
and fractional quantum Hall effect in fractal dimensions", Physical Review Research 2,
023401 (2020) [* authors equally contributed to this work]

[2] : Callum Duncan, Sourav Manna and Anne E. B. Nielsen, "Topological models in
rotationally symmetric quasicrystals", Physical Review B 101, 115413 (2020) [Editors’
Suggestion]

5.1 Quasicrystals

Quasicrystals are the quasi-periodic structures in two-dimensions which are long-range
ordered but are not periodic [239, 32, 107, 14, 240, 33, 226, 195, 196, 185]. A qua-
sicrystalline geometry continuously fills in all available space, but it lacks translational
symmetry, that means a shifted copy of the quasicrystal will never match exactly with its
original. Quasicrystals possess long-range order but are non-periodic. Their long-range
order gives rise to the sharp diffraction peaks [239], as found in the crystals. They contain
a small set of local environments which reappear again and again, but in a non-periodic
fashion. Because of this fact, the Bloch’s theorem no longer holds. A two-dimensional
crystal can exhibit only two-fold, three-fold, four-fold, and six-fold rotational symmetries
while a two-dimensional quasicrystal can have five-fold, eight-fold, and ten-fold rotational
symmetries, which are noncrystallographic. Hence a crystal has translational symmetry
whereas a quasicrystal does not have translational symmetry. Therefore it follows that
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Figure 5.1.: In the upper panel we show the examples of the rhombus Penrose tiling, as the
five-fold rotationally symmetric quasicrystal, as obtained from the Robinson triangle
decomposition method. In (a), a zoomed portion of the Penrose tiling is showing
the two types of rhombuses by the grey colored shading and by the white colored
shading. In (b), a larger portion of the Penrose tiling is showing the self-similar
structure. In (c), we show the couplings, that is the connections along the rhombuses,
of the Penrose tiling by using solid lines with 86 lattice sites, which are pictured as
the grey colored circles and are sitting at the vertices of the tiling. In the lower panel
we show the examples of the rhombus Ammann-Beenker tiling, as the eight-fold
rotationally symmetric quasicrystal, as obtained from the cut-and-project method. In
(d), a zoomed portion of the Ammann-Beenker tiling is showing the two types of
rhombuses by the grey colored shading and by the white colored shading. In (e), a
larger portion of the Ammann-Beenker tiling is showing the self-similar structure.
In (f), we show the couplings, that is the connections along the rhombuses, of the
Ammann-Beenker tiling by using solid lines with 73 lattice sites, which are pictured
as the grey colored circles and are sitting at the vertices of the tiling.

the long-range order in quasicrystals cannot originate from a periodic arrangement of the
unit cells rather it requires a different origin.

Quasicrystalline orders arise from the incommensurate projection of the higher dimen-
sional periodic structures or from the continuous tiling of space having discrete unit cells,
and hence enables the investigation of physics of higher dimensions, in particular in the
context of topology. Quasicrystals become important in condensed matter physics over
the recent years, for example the study of the twisted bilayer graphene system. Recently
the experimental demonstration [239] of an eight-fold rotationally symmetric optical
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lattice, realizing a two-dimensional quasicrystalline potential with ultra-cold atoms, opens
up the door to experimentally study the properties of quasicrystal structures.

5.1.1 Examples as the Penrose tiling and the
Ammann-Beenker tiling

An approach to construct the quasicrystals was discovered by Penrose [181], where a
set of tiles and the associated matching rules that ensure the aperiodic long-range order,
when tiling a plane, were described. The resulting quasicrystal was five-fold rotationally
symmetric and it is known as the Penrose tiling as we show in Fig. 5.1 (a), (b), (c), where
we use the Robinson triangle decomposition method which gives the Penrose tiling with
rhombuses. Here all the tiles have the same side length.

Also a closely related eight-fold rotationally symmetric quasicrystal was described
which has octagonal tiling and which is known as the Ammann-Beenker tiling [5, 20] as
we show in Fig. 5.1 (d), (e), (f), where we utilize the cut-and-project method. Here all the
tiles have the same side length. In addition to their peculiar rotational symmetries, these
tilings have the remarkable feature of being self-similar at large scales.

5.2 Fractal lattices and fractional dimensions
The theory of vector spaces provides the oldest and the most natural definition of dimen-
sions, that is, an object has dimension k if it is visible from k orthogonal directions. But
an object, such as a sea-coast or a snow-flake, is too irregular to be properly described by
the traditional dimensional analysis. Therefore a more general definition of the dimension
was provided by Felix Hausdorff which takes into account the irregularity of the object
that is measured, and the dimension is called the Hausdorff dimension or the fractal
dimension. This gives the feeling for the most fitted scale to measure the object. The
roughness of such objects makes these objects hard to analyze and the mathematician
Benoit Mandelbrot, coined a new chapter of mathematics, which is called the fractal
geometry [189, 68, 203, 123, 244]. The name appears from the Latin word "fractus"
which means broken. Mathematically a fractal is a subset of an Euclidean space which
exhibits fractional dimension. In the words of Mandelbrot, "Clouds are not spheres,
mountains are not cones, coastlines are not circles, and bark is not smooth, nor does
lightning travel in a straight line."

We illustrate the traditional notions of geometry, which define the scaling and dimen-
sion, in Fig. 5.2. The measurement of the length of a line using one stick, and then the
measurement of the same length using two sticks with 1/2 of the previous stick length,
and again the measurement of the same length using three sticks with 1/3 of the first
stick length, and so on, correspond to one dimension. This holds in two dimensions as
measuring the area of a square with one box, and measuring the same area with four
boxes each having side length as 1/2 of the previous one, and again measuring the same
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Figure 5.2.: We show the traditional concepts of geometry to define dimension and scaling in
one dimension as displayed by the pink lines, in two dimensions as displayed by
the indigo squares, and in three dimensions as displayed by the light-green cubes
(redrawn from Wikipedia).

area with eight boxes each having side length as 1/3 of the first one, and so on. Similarly
we have three-dimensional case also.

Mathematically we define this scaling as

N = ξ
−D or D =− lnN

lnξ
, (5.1)

where N is the total number of units as for example the total number of sticks for
one dimension, the total number of squares for two dimensions etc. which cover the
whole space, ξ is the scaling factor as for example 1/2, 1/3 etc. and D stands for the
dimension.

The same rule of scaling as we show in Eq. (5.1) holds for the fractal geometry and D is
termed as the fractal dimension or the Hausdorff dimension which corresponds to a ratio
providing an index of complexity by comparing how details of a fractal pattern changes
with the measurement scale. It also gives a measurement of the space filling capacity that
shows how a fractal pattern scales differently from the space where it is embedded in.
Therefore D can be a fraction in the fractal space. This property is solely based on the
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scaling and on the self-similarity, which means that the fractals exhibit similar patterns at
increasingly small length scales.

5.2.1 Example as the Sierpinski gasket of dimension ' 1.585

Figure 5.3.: A Sierpinski gasket fractal model, as shown by the dark grey regions, exhibits the
Hausdorff dimension ln(3)/ ln(2)' 1.585 and is embedded in the two-dimensional
plane, as shown by the light grey color in the background. On the left figures we
show the operation to create the different generations. The blue crossed-circles
display the positions of the lattice sites on the fractal structures.

A fractal structure is constructed by using the generations repeatedly and a full fractal
structure is defined in the infinite generation. The Sierpinski gasket [34] is one of the
famous examples of the fractal geometries. The 0th generation of it is an equilateral
triangle to start with and then the (n+1)th generation is obtained from the nth generation
by applying the operation as we show in Fig. 5.3, in the left side, to all the triangles in the
gasket. At any stage of the generations we have the Hausdorff dimension

D =
ln(3)
ln(2)

' 1.585. (5.2)

The full fractal can be obtained in the limit of infinite generation.
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The generation of a fractal remains finite since in any physical system, there is a limit
to how small the smallest length scale of a fractal lattice can be and a limit to how large
the total fractal lattice can be. Therefore the investigations of fractals at a length scale,
which is large compared to the smallest fractal structure and small compared to the total
size of the fractals, would be independent of the fractal generations as finite or as infinite
and the system would be effectively in a space with the fractal dimension.

Here we consider a lattice model on the fractal, where there is one lattice site at the
center of each of the smallest triangles. In the limit of large enough generation, it does
not make a significant difference, whether we treat each triangle as a triangle or a single
point, since the triangles are much smaller than the length scales of interest.

5.3 Anyon density profiles and charges

In this section we take the lattice Laughlin states in the presence and in the absence of
anyons in the systems as defined in Eqs. (3.39), (3.46) in the quasicrystals and in the fractal
lattices. We show that the state has the right topological properties to qualify for being a
Laughlin type state. We claim this by investigating anyon density profiles and charges and
by showing that the anyons are well-screened and possess correct charge and right braiding
properties as those of the Laughlin anyons. We employ Monte-Carlo simulations and take
n j ∈ {0,1}, Q = 2 anyons, pk = 1 for the quasiholes, pk =−1 for the quasielectrons,
and consider q = 3 while studying anyons in the quasicrystals and consider q = 2 while
studying anyons in the fractal lattices. We mention that we investigate both the quasiholes
and the quasielectrons in quasicrystals and investigate only the quasiholes in the fractal
lattices. We keep the total number of particles M and the total flux ηN fixed while going
from one generation to the next generation for the case of the fractal lattices.

We define the particle density difference at the jth lattice as

ρ(z j) = 〈n(z j)〉Q6=0−〈n(z j)〉Q=0, (5.3)

where n(zi) is the particle occupation number at the jth lattice site. We have

〈n(z j)〉Q 6=0 and 〈n(z j)〉Q=0 (5.4)

as the particle densities of the jth lattice site in the presence and in the absence of anyons
in the states respectively. Therefore the quantity ρ(z j) gives the expectation value of the
particle numbers on the jth lattice site in the presence of the anyons, relative to the same
quantity in the absence of the anyons. We keep the magnetic flux ηN same in the two
cases by suitably choosing the particle number M in the system.

We define the excess charge of the kth anyon, by taking the standard particle charge to
be −1, as

Qk(r) =−
N

∑
i=1

ρ(zi)Θ(r−|zi−wk|), (5.5)
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where Θ(. . .) is the Heaviside step function which we define as

Θ(r−|zi−wk|) = 1, if |r−|zi−wk| ≤ 0, and
= 0, otherwise.

(5.6)

Therefore the excess charge is minus the sum of ρ(zi) within a circular region of radius r.
For properly screened and well-separated anyons, we note that Qk(r) is constant, when
r is much larger than the size of the anyon, but small enough that the circular region is
far from all the other anyons in the system and far from the edge. This constant is called
the charge of the anyon and should be equal to pk/q. Below we research anyons in the
quasicrystals and in a number of fractal geometries.

5.3.1 Anyons in quasicrystals

We use Eqs. (5.3) and (5.5) respectively to investigate the density profiles and the excess
charge distributions of anyons. We display the outcomes in Fig. 5.4 and in Fig. 5.5.
We choose the anyon flavors as two quasiholes, two quasielectrons, one quasihole-
one quasielectron and plot the density profiles with colorbars in Fig. 5.4 (a), (c), (e)
respectively for the five-fold rotationally symmetric Penrose tiling, where we take the
number of lattice sites N = 381, and in Fig. 5.5 (a), (c), (e) respectively for the eight-fold
rotationally symmetric Ammann-Beenker tiling, where we take the number of lattice sites
N = 273.

We find that the anyons are well-screened with radii of a few lattice constants. The
excess charge distributions Qk are plotted as a function of the radial distances r/

√
2π ,

from the anyon positions, corresponding to the above mentioned anyon configurations
in Fig. 5.4 (b), (d), (f) for the Penrose tiling and in Fig. 5.5 (b), (d), (f) for the Ammann-
Beenker tiling. We note that the anyon charges approach '±0.33 for large r. We find
that the sizes of the anyons depend on the local structures of the lattice sites around the
anyons. This is reasonable because the screening is affected by the lattice points which
are close to the anyons and where we allow particles to be present. But in all the cases we
have well-screened anyons with proper charges.

5.3.2 Anyons in the Sierpinski gasket of dimension ' 1.585

The density of particles sets the relevant length scale of the system, and this corresponds
to choose the number of particles such that the typical distance between two particles
becomes large compared to the smallest lattice spacing and at the same time becomes
small compared to the complete fractal. We use Eqs. (5.3) and (5.3) respectively to
investigate the density profiles and to compute the charges of anyons, take the particle
number M = 30, and show that the anyons are well-screened with expected charge ' 0.5
in Fig. 5.6.

We note that the two generations, as the 4th generation and the 5th generation, of the
Sierpinski gasket have the same typical distance between the particles and therefore the
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Figure 5.4.: In (a), (c), (e): We denote lattice sites, quasiholes, and quasielectrons by the black
circles, the green stars, and the black squares respectively. The density profiles
ρ(zi) from Eq. (5.3), defined as the particle density difference between the states
in the presence and in the absence of the anyons in the systems, are plotted with
colorbars for the cases of two quasiholes, two quasielectrons, one quasihole-one
quasielectron in (a), (c), (e) respectively for the five-fold rotationally symmetric
Penrose tiling, where we take the number of lattice sites N = 381. We find that
the anyons are well-screened with radii of a few lattice constants. In (b), (d), (f):
The excess charge distributions Qk are computed from Eq. (5.5) and are plotted as a
function of the radial distances r/

√
2π , from the anyon positions, corresponding to

the above mentioned anyon configurations. The anyon charges approach �±0.33
for large r with an errorbar of size 10−4 arising due to the Monte-Carlo simulations.
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Figure 5.5.: In (a), (c), (e): We denote lattice sites, quasiholes, and quasielectrons by the black
circles, the green stars, and the black squares respectively. The density profiles
ρ(zi) from Eq. (5.3), defined as the particle density difference between the states
in the presence and in the absence of the anyons in the systems, are plotted with
colorbars for the cases of two quasiholes, two quasielectrons, one quasihole-one
quasielectron in (a), (c), (e) respectively for the eight-fold rotationally symmetric
Ammann-Beenker tiling, where we take the number of lattice sites N = 273. We find
that the anyons are well-screened with radii of a few lattice constants. In (b), (d), (f):
The excess charge distributions Qk are computed from Eq. (5.5) and are plotted as a
function of the radial distances r/

√
2π , from the anyon positions, corresponding to

the above mentioned anyon configurations. The anyon charges approach �±0.33
for large r with an errorbar of size 10−4 arising due to the Monte-Carlo simulations.

76 Chapter 5 Anyons and Fractional QuantumHall Physics in Quasicrys-
tals and in Fractal Lattices



w1

w2

w1

w2

0.37

0

-0.37

.

.

.

.

.

Figure 5.6.: In the left figure the green triangles form a Sierpinski gasket. The operation needed to
go from one generation to the next is shown there also. The considered lattice model
has one lattice site on each triangle. Generation five and generation four are shown
with circles and with squares respectively. The solid and the dashed arrows mark the
coordinates w1 and w2 for two anyons respectively. We separately show the anyons
in the Sierpinski gasket at the 4th generation, as given in the upper right figure, and
at the 5th generation, as given in the lower right figure. We picture the lattice sites
as the black circles, and we place two anyons on the lattice sites as marked by the
green ring. In all the figures we show the density profiles ρ j of the anyons from
Eq. (5.3) with colorbar. The error-bars arising for the Monte-Carlo simulations are
small and of the order 10−4. We find that the anyons are well-screened. We keep the
particle number and the total flux fixed while going from one generation to the next
generation. We note that the particle densities are spread over more lattice sites but
the total size of the anyons remain the same.

size of the anyons do not change significantly while going from one generation to the next
generation. Also the anyons are small compared to the full fractal and hence the anyon
shapes would not be hampered if we replace the finite generation fractal with an infinite
generation fractal. When we increase the generation by one, each lattice site splits into
three, but if the generation is already high, there will still be at most one particle on the
three sites, since the wavefunction is very small if particles are close. The sites therefore
effectively act as a single site, and this leads to convergence. It is already visible in the
Fig. 5.6 that the size of the anyon is practically the same for generation 4 and 5, and the
generation is hence large enough to capture the physics of the infinite generation limit.
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We find that the sizes of the anyons depend on the local structures of the lattice sites
around the anyons. This is reasonable because the screening is affected by the lattice
points which are close to the anyons and where we allow particles to be present. But in
all the cases we have well-screened anyons with proper charges.

We point out the reason of not considering quasielectrons in fractal lattices as follows.
We note that the fractal lattices are defined in the infinite generations. While going
from one generation to the next generation, we keep the particle number and the total
flux fixed. In each next generation we have larger number of lattice sites and thereby
smaller amount of flux through each lattice site. Therefore in infinite generation, the
number of lattice sites becomes infinite while the amount of flux through each lattice site
becomes vanishingly small. This situation corresponds to the scenario of approaching the
continuum limit where the quasihole converges to a particular shape, as we show here in
Fig. 5.6, but the quasielectron approaches a singularity and hence does not converge to a
particular shape.

5.3.3 Anyons in other fractal dimensions 0 < dimension≤ 2

We have shown that the anyons and the fractional quantum Hall physics can exist in
fractional dimension D' 1.585. Now we demonstrate that the effects can be seen in any
fractal dimension 0 < dimension ≤ 2. We take the particle number M = 40 for all the
computations here. We construct a family of fractals to obtain different dimensions as
follows.

We start from a square, and we divide it into L×L squares of equal sizes. We proceed
from one generation to the next generation by keeping U number of squares in a particular
pattern, and then by repeating the process. Therefore the fractal dimension becomes

D =
ln(U)

ln(L)
. (5.7)

The particular pattern for a fixed U can be taken as will, and this pattern corresponds to
only the structure of the distribution of the lattice sites for a fixed D. We take L = 4 and
generate fractal lattices of different dimensions by suitably choosing U . We show that the
anyons are well-screened and possess the charge ' 0.5 for all dimensions ranging from 2
to 1 in Figs. 5.7, 5.8, 5.9.

In Fig. 5.10 (a) we place the model on a one dimensional line, and we find that the
anyons are not screened. This is expected since this particular model is known to be
critical [227]. However, interestingly, in Fig. 5.10 (b) we find that the well-screened
anyons and the fractional quantum Hall physics exist in one dimension if we choose the
fractal lattice as shown in the last inset in Fig. 5.9. Similarly we take L = 5 and U = 4,
such that the fractal dimension becomes

D = ln(4)/ ln(5)' 0.86, (5.8)
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Figure 5.7.: We show anyons on the fractal lattices of different dimensions D. We plot the density
profiles ρ j of the anyons from Eq. (5.3) with colorbar. We generate the fractals by
using Eq. (5.7) and by starting from the 0th generations as shown in Fig. 5.9 in the
insets. We take the number of lattice sites as 162 in (a), as 152 in (b), as 142 in (c), as
132 in (d), as 122 in (e), and as 112 in (f). We find that the anyons are well-screened
in all the cases and the errorbars, coming from the Monte-Carlo simulations, are of
the order 10−4. We note the shapes of the anyons depend on the local structure of
the fractal lattices.

and we investigate anyons in this model in Fig. 5.10 (c). This shows that well-screened
anyons and the fractional quantum Hall physics can be obtained even in dimension less
then one.
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Figure 5.8.: We show anyons on the fractal lattices of different dimensions D. We plot the density
profiles ρ j of the anyons from Eq. (5.3) with colorbar. We generate the fractals by
using Eq. (5.7) and by starting from the 0th generations as shown in Fig. 5.9 in the
insets. We take the number of lattice sites as 102 in (a), as 92 in (b), as 83 in (c), as
73 in (d), as 63 in (e), and as 54 in (f). We find that the anyons are well-screened in
all the cases and the errorbars, coming from the Monte-Carlo simulations, are of the
order 10−4. We note the shapes of the anyons depend on the local structure of the
fractal lattices.

Our results suggest that the lattice points distributions are more important in having the
anyons and the fractional quantum Hall physics rather than the Hausdorff dimensions of
the fractal spaces.
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Figure 5.9.: In the insets we divide a square into 16 squares, and keep only the squares in the
violet color, and then repeat the process. Thereby we generate the fractals of different
dimensions D by using Eq. (5.7). We restrict to the generation 4 for D < 1.2, to the
generation 3 for 1.2 < D < 1.55, and to the generation 2 for D > 1.55. In the main
plot we show the charges of the two anyons as a function of D, where we take the
same radius r of the local regions around the anyons. The anyon charges Q1 and Q2
are found to be ' 0.5, as we mark by the green line, for all the fractal dimensions.
We find small enough errorbars of the order 10−4 arising from the Monte-Carlo
simulations. The results show that the anyons and the fractional quantum Hall
physics can exist in all the dimensions ranging from 2 to 1.

5.4 Braiding statistics of anyons

Well-screened anyons are the license to obtain fractional braiding statistics. We braid the
anyons by moving them in a continuous path. In a two-dimensional plane we do this by
placing the anyon at any point. In the fractal lattices we note that even when an anyon
is between the lattice sites, the anyon is still only present on the fractal lattice since we
allow the particles to reside on the lattice sites only.

We adiabatically circulate one anyon, say the kth anyon, around another anyon, say the
jth anyon, along a closed path, say Γ. Therefore the state transforms as

|Ψ〉 → γB|Ψ〉, (5.9)
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(a) (c)(b) D=1 D≃0.86

Figure 5.10.: In (a) we place our model on a one-dimensional line. We find that the anyons
are not screened. That is no matter how far we put the anyons from one another,
they always overlap. In (b) we find, however, that it is possible to have the well-
screened anyons and the fractional quantum Hall physics in one dimension if we
instead choose to keep 4 squares as shown in the last inset of Fig. 5.9. In (c) we
show well-screened anyons in fractal dimension D' 0.86. In all the cases we take
44 number of lattice sites and plot the anyon density profiles ρ j from Eq. (5.3)
with colorbars. We estimate small errorbars of the order 10−4 arising from the
Monte-Carlo simulations.

where the Berry phase

γB = eiθB (5.10)

is defined as

θB = i
∮

Γ

〈Ψ| ∂Ψ

∂wk
〉dwk + c.c., (5.11)

where c.c. denotes the complex conjugate of the first term. We exploit Eq. (3.46) to write
θB in Eq. (5.11) as

θB = i
pk

2

∮
Γ
∑

i

〈ni〉
wk− zi

dwk + c.c. (5.12)

To find the statistics of the anyons the quantity of interest becomes

δθB = θ
inside
B −θ

outside
B , (5.13)
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Figure 5.11.: Anyons on fractal of dimension D = 1.5. The color of each lattice site gives ρ(z j)
and the positions w1 and w2 of the anyons are marked by the arrows. The green
line shows the braiding path chosen. The anyons remain screened while placed in
different positions along the braiding path. Here, q = 2, M = 40, and the number of
lattice sites is 83.

where θ inside
B and θ outside

B are the Berry phases respectively when the jth anyon is inside
and is outside the closed path Γ. Therefore we write

δθB = i
pk

2

∮
Γ
∑

i

〈ni〉inside−〈ni〉outside

wk− zi
dwk + c.c. (5.14)

Now the particle densities are only modified locally around the anyon positions and
hence the factor

〈ni〉inside−〈ni〉outside (5.15)
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in Eq. (5.14) is non-zero only around the jth anyon. Therefore we write

δθB =−2π pk ∑
i∈Γ

〈ni〉inside−〈ni〉outside,

= 2π pk p j/q,
(5.16)

which is the expected braiding statistics for the two Abelian anyons of charges pk/q and
p j/q in the lattice Laughlin state.

We explicitly compute the braiding statistics for fractal lattices. We take one choice
of the fractal lattice and one choice of the braiding path as shown in Fig. 5.11. We
compute the integrals in Eq. (5.14) and find the numerical value δθB/2 = 0.5π for the
exchange statistics, which agrees with the expected value π/2. Thereby we conclude that
the Laughlin type states in the quasicrystals and in the fractal lattices have the desired
topological properties.

5.5 Parent Hamiltonians

Till now, we have constructed the analytical states, in the presence and in the absence
of the anyons, and have demonstrated that the anyons and the fractional quantum Hall
physics exist in the quasicrystals and in the fractal lattices having fractional dimensions.
We now use the underlying conformal field theory construction as shown in Chapter-4 in
Sec. 4.3 to obtain the parent Hamiltonian for our analytical lattice states by employing
the following null field, which can be demonstrated to be the null field by following the
method as shown in Appendix-B, as

χ(v) =
∮

v

dz
2πi

1
z− v

[
G+(z)V0(v)−qJ(z)V1(v)

]
, (5.17)

where we have the following operators as

G+(z) =: ei
√

qφ(z) :,Vn j(v) = (−1)( j−1)n j : ei(qn j−1)φ(v)/
√

q :,J(z) =
i
√

q
∂zφ(z). (5.18)

We exploit the method as shown in Appendix-C and construct the following parent
Hamiltonian, provided the condition

η ≤ 1+q/N +∑
k

pk/N (5.19)

is satisfied, as

H = ∑
i

∑
k( 6=i)

∑
j( 6=i)

1
z̄i− z̄k

1
zi− z j

[
T̄−1

k T−1
j b†

kb j− T̄−1
k T−1

i b†
kbi(qn j−1)

− T̄−1
i T−1

j (qnk−1)b†
i b j + |Ti|−2ni(qnk−1)(qn j−1)

]
. (5.20)
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We have here b j as the hardcore bosonic or fermionic annihilation operator on the jth
lattice site, when q is even or q is odd respectively, and we write

n j = b†
jb j (5.21)

as the number operator at the jth lattice site, and

Tk = eiφke−iπ(k−1)
∏

i
(wi− zk)

pi ∏
j
(z j− zk)

1−η . (5.22)

Numerically we find that the ground state of H is unique, when we have M number of
particles in the system. Braiding is done by varying wk, which amounts to varying the
strengths of the terms in the Hamiltonian.

5.6 Conclusions
In this chapter we have constructed a new type of the fractional quantum Hall models
on the quasicrystals and on the fractal lattices. We have shown that the anyons and the
fractional quantum Hall physics can exist in the quasicrystals and in the fractal lattices in
all dimensions 1≤ dimension≤ 2. We have also shown one example with anyons existing
in fractal lattices having dimension less than one. Our investigations have shown that
the lattice points distributions are more important in hosting the anyons and in realizing
the fractional quantum Hall physics rather than the Hausdorff dimensions of the fractal
spaces.

These outcomes are the beginning to explore further studies such as the transport
properties and the entanglement properties which strongly depends on the dimensions
of the spaces. Besides our constructions provide some hints to build up the fractional
Chern insulator type model Hamiltonians, on the quasicrystals and on the fractal lattices,
having interactions and complex hoppings resembling the magnetic field. Such kind of
models motivate to realize the fractional quantum Hall physics with the ultra-cold atoms
in optical lattices.

Also our work strongly motivates the development of additional methods to test for the
topology in the geometries, having fractional dimensions and having open surfaces. The
outcomes show that we can use our construction to obtain the anyons and the fractional
quantum Hall physics on the lattices, to directly probe the topological order, where one
can not easily construct a topological flat band, due to the lack of translational symmetry,
which invalidates the computation of the many-body Chern number.
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Anyonic Quasiparticles
of Hardcore Anyons

6

„Not only is the Universe stranger than we think, it
is stranger than we can think.

— Werner Heisenberg

One of the most well known systems that can deliver anyons [10], having unususal
properties such as bespoken fractional charge and exotic braiding statistics, is the frac-
tional quantum Hall system. The lattice versions of the fractional quantum Hall systems
are of particular interest due to their potential to be experimentally realized in the field
of the ultra-cold atoms in optical lattices. Much work has been done to investigate and
classify different types of anyons that can appear in the fermionic or in the bosonic
fractional quantum Hall systems.

In this chapter we show that the anyons themselves can give rise to their own anyonic
quasiparticles. And the emergent anyons can have different charge and different statistics
as compared to the same quantities of the original anyons in the systems. We consider the
model systems as the family of the lattice Laughlin states on a plane [169]. The family
is described by the Landau level filling factor 1/q. If q is odd then the family is for the
fermions and if q is even then the family is for the bosons. These families are known to
support the anyonic quasiparticles. Now we consider the case of q as non-integer and
thereby the family is for the anyons. We allow maximum one particle in each lattice
site and hence consider a system of the hardcore anyons. Our constructions give rise
to different types of the fractional quantum Hall models. We show that the positively
charged and the negatively charged anyonic quasiparticles, so called the quasiholes and
the quasielectrons respectively, can be created in the systems. We investigate the density
profiles, charges and braiding properties of the emergent anyons.

In Sec. 6.1 we introduce the lattice systems of the hardcore anyons, containing the
anyonic quasiparticles. We study the density profiles and charges of the emergent anyons
is Sec. 6.2 which show that the anyonic quasiparticles are well-screened and possess right
charges. In Sec. 6.3 we compute braiding statistics of the anyonic quasiparticles and show
that it is different from the statistics of the elementary anyons which constitute the system.
We draw the conclusions in Sec. 6.4. This chapter is based on parts of the following Ref.
[256]:

[1] : Julia Wildeboer, Aniket Patra, Sourav Manna and Anne E. B. Nielsen, "Anyonic
quasiparticles of hardcore anyons", Physical Review B 102, 125117 (2020)
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6.1 Model of the hardcore anyons

We recall the lattice Laughlin state at the Landau level filling fraction 1/q without anyonic
quasiparticles on a two-dimensional complex plane from Eq. (3.39) in Chapter-3 in Sec.
3.3 as

Ψ({z j}) = δn ∏
i< j

(zi− z j)
qnin j ∏

i 6= j
(zi− z j)

−ηni , (6.1)

where the condition δn = 1 fixes the particle number to

M =
ηN
q

(6.2)

and otherwise δn = 0.

We take ni ∈ {0,1} as the particle occupation number at the jth lattice site at position
z j. We recast the state as

Ψ({z j}) = δn ∏
i< j

(Zi−Z j)
q

∏
{i, j|Zi 6=z j}

(Zi− z j)
−η , (6.3)

where Z j ∈ {z1,z2, . . . ,zN} is the position of the jth particle. From this expression, we
observe that the state acquires a phase factor e2πiq if one particle is circulated in the
counter-clockwise fashion around another particle. Therefore, the state describes the
fermions if q is odd, describes the hardcore bosons if q is even, and describes the hardcore
anyons if q is non-integer.

6.2 Anyon density profiles and charges

We define the particle density of the ith lattice site for any state |Φ〉 as

〈n(zi)〉= 〈Φ|n(zi)|Φ〉. (6.4)

Therefore we write the anyon density profiles as

ρ(zi) = 〈n(zi)〉Q6=0−〈n(zi)〉Q=0, (6.5)

where n(zi) is the particle occupation number at the ith lattice site. We define

〈n(zi)〉Q 6=0 and 〈n(zi)〉Q=0 (6.6)

respectively as the particle density at the ith lattice site in the presence of Q anyons in the
systems and at the ith lattice site without any anyon inserted in the systems.
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Figure 6.1.: In (a), (c), (e): The black circles, the green stars, and the black squares represent
the lattice sites, the quasiholes, and the quasielectrons respectively. The number of
lattice sites is fixed to N = 240 and we take η = 1. The density profiles ρ(zi) from
Eq. (6.5), defined as the difference in the expectation value of the number of particles
on the ith lattice site in the presence and in the absence of the anyons in the systems,
are plotted with colorbars for the cases of three quasiholes, three quasielectrons, one
quasihole-one quasielectron for q= 3/2 in (a), (c), (e) respectively. We show that
the anyons are well-screened with a radii of a few lattice constants. In (b), (d), (f):
The excess charge distributions from Eq. (6.7) are computed by summing over the
density distribution of the anyons over the lattice sites in a small region around each
anyon and are plotted as a function of the radial distances r/

√
2π from the anyon

positions corresponding to the above mentioned anyon configurations. We note that
the anyon charges approach the values �±2/3. Also, the density profiles are very
similar for the quasiholes and the quasielectrons except for the sign as evident from
the plot of ∑Qk in (f).
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Figure 6.2.: In (a), (c), (e): The black circles, the green stars, and the black squares represent
the lattice sites, the quasiholes, and the quasielectrons respectively. The number of
lattice sites is fixed to N = 240 and we take η = 1. The density profiles ρ(zi) from
Eq. (6.5), defined as the difference in the expectation value of the number of particles
on the ith lattice site in the presence and in the absence of the anyons in the systems,
are plotted with colorbars for the cases of five quasiholes, five quasielectrons, one
quasihole-one quasielectron for q= 5/2 in (a), (c), (e) respectively. We show that
the anyons are well-screened with a radii of a few lattice constants. In (b), (d), (f):
The excess charge distributions from Eq. (6.7) are computed by summing over the
density distribution of the anyons over the lattice sites in a small region around each
anyon and are plotted as a function of the radial distances r/

√
2π from the anyon

positions corresponding to the above mentioned anyon configurations. We note that
the anyon charges approach the values �±2/5. Also, the density profiles are very
similar for the quasiholes and the quasielectrons except for the sign as evident from
the plot of ∑Qk in (f).
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Figure 6.3.: (a) The particle density difference ρ(zi) and (b) the excess particle numbers Qk, as
well as∑Qk, as a function of the radial distance from the anyon positions for q= 3/2,
η = 30/151, and N = 1208. In (a), the circles represent the lattice sites. The square
at w1 and the star at w2 denote a quasielectron and a quasihole, respectively. The
system has ηN/q= 160 particles. The plots show that the anyons are screened.

We take the standard particle charge as−1 and write the excess charge of the kth anyon,
described as the sum of minus the density profile ρ(zi) over a circular region of radius r
around the anyon, as

Qk(wk) =−∑
i

ρ(zi) with |zi−wk| ≤ r, (6.7)

where k ∈ {1,2, ....,Q} and ρ(zi) is defined in Eq. (6.5). The charge Q of the anyon is
the value that the excess charge converges to for large r when the region is far from the
edge and far from other anyons in the system.

We recall the lattice Laughlin state with anyons from Eq. (3.46) in Chapter-3 in Sec.
3.3 where the anyon charge is given as pk/q with pk =±1. We take the specific choices
for q as q= 3/2 and q= 5/2. We present the results in Fig. 6.1 and in Fig. 6.2. We show
the anyon density profiles in Fig. 6.1 (a), (c), (e) for the systems with three quasiholes,
three quasielectrons, one quasihole-one quasielectron for q= 3/2 respectively and in Fig.
6.2 (a), (c), (e) for the systems with five quasiholes, five quasielectrons, one quasihole-one
quasielectron for q= 5/2 respectively.

We find that the anyons are well-screened with a radii of a few lattice constants. The
excess charge distributions of the anyons are plotted as a function of the radial distances
from the anyon positions as shown in Fig. 6.1 (b), (d), (f) for q= 3/2, where we note the
anyon charges to approach the values �±2/3, and in Fig. 6.2 (b), (d), (f) for q= 5/2,
where we note the anyon charges to approach the values � ±2/5. Also, the density
profiles are very similar for the quasiholes and the quasielectrons except for the sign as
evident from the plot of ∑Qk, defined as the sum of quasihole and quasielectron excess
charge distributions, in Fig. 6.1 (f) and in Fig. 6.2 (f).

In Fig. 6.3, we show the particle density difference for the combination of quasihole
and quasielectron, when we are much closer to the continuum limit. We take q= 3/2,
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η = 30/151, and N = 1208. Also in this case we observe screening. This property is
retained for even smaller values of η . Proceeding this way, one can obtain a consistent
continuum limit for the quasihole. However, such a limit generally does not exist for the
quasielectron.

6.3 Braiding statistics of anyons

We determine the result of braiding the anyon coordinate wk around the anyon coordinate
w j in the counter-clockwise manner. The Berry phase eiθk acquired by the state when wk
is circulated along the closed path c is

θk = i
∮

c
〈Ψ| ∂Ψ

∂wk
〉dwk + c.c.

= i
pk

2

∮
c
∑

i

〈Ψ|ni|Ψ〉
wk− zi

dwk + c.c., (6.8)

where c.c. denotes the complex conjugate of the first term.

We are interested in the statistical phase of the anyons and therefore in the quantity

∆θk = θk,in−θk,out, (6.9)

where θk,in and θk,out are the Berry phases when w j is well-inside and is well-outside the
closed path c respectively. We have

∆θk = i
pk

2

∮
c
∑

i

〈ni〉in−〈ni〉out

wk− zi
dwk + c.c. (6.10)

Since the anyons are well-screened, therefore the particle densities are only modified
around the vicinity of the anyon positions. Hence we can take

〈ni〉in−〈ni〉out (6.11)

outside the integral, which leads to

∆θk =−2π pk ∑
i inside c

(〈ni〉in−〈ni〉out). (6.12)

The sum is precisely minus the charge of the anyon at position w j, and thereby it follows
that

∆θk = 2π pk p j/q. (6.13)

This is the same result as the Berry phase for the lattice Laughlin states, except that q
is now a non-integer.
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6.4 Conclusions
In this chapter we have found that the systems of hardcore anyons can support the
formation of the anyonic quasiparticles, and the charge and braiding properties of the
emergent anyons can differ from the same properties of the original anyons, which
constitute the systems.

We have shown that the lattice Laughlin states with non-integer q provide the models
of hardcore anyons, where the above mentioned phenomena occur. We have found that
braiding one of the original anyons around another anyon gives a phase factor e2πiq on the
state, while braiding one of the emergent anyons of charge pk/q around another emergent
anyon of charge p j/q, where pk and p j are integers, gives a phase factor e2πipk p j/q on
the state if there is screening of the anyonic quasiparticles in the systems. We have
shown numerically that the anyonic quasiparticles are well-screened for q = 3/2 and for
q = 5/2.

The work motivates several further investigations. In particular, it would be interesting
to see which types of anyons can be hosted by the systems of non-Abelian anyons.
It would also be interesting to look for the possible physical implementations and to
investigate which types of quantum gates can be constructed by using such systems.
Another interesting future investigation could involve the question if the entanglement
properties can be extracted from the hardcore anyonic states and if the parent Hamiltonians
exist for which the analytical states with hardcore anyons are the exact ground states.
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Quasiparticles Detect
Topological Quantum
Phase Transitions

7

„We appear to live in the best of all possible worlds,
where the computable functions make life
predictable enough to be survivable, while the
noncomputable functions make life (and
mathematical truth) unpredictable enough to
remain interesting, no matter how far computers
continue to advance.

— Gottfried Wilhelm von Leibniz

Phases and phase transitions provide an important framework to probe the physics
of strongly correlated quantum many-body systems. Describing physical systems in
terms of phases allows us to eye on key properties without going into the full set of
microscopic details. Quantum phase transitions take place at zero temperature and are
driven by the quantum fluctuations, which are rooted in the Heisenberg uncertainty
principle. These phase transitions occur when a control parameter, such as the pressure
or the magnetic field strength [198, 209], is varied and imply the non-analytic behavior
of the ground state energy as a function of the control parameter. Quantum phase
transition can be characterized by a local order parameter, which arises from the broken
symmetry of the system, in the conventionally ordered phases. And often the choice
of the order parameter is obvious, for example the total magnetization can be used
in the ferromagnetic-paramagnetic phase transitions. The Landau-Ginzburg theory of
the quantum fluctuations of order parameter was developed to describe such symmetry
breaking phase transitions. However the notion of detecting phase transitions by using the
local order parameters breaks down for the case of the topologically ordered systems [251].
Different topologically ordered phases can exhibit the same symmetry and therefore such
phases can not be distinguished by using the symmetry breaking analysis. These phases
of matter are characterized by the long-range entanglement and go beyond the painting of
the Landau-Ginzburg theory, and thereby become particularly challenging to investigate.
These incompressible phases can not be described by the local order parameters, rather
they are characterized by the global order parameters instead. Therefore different kinds
of probes are required to distinguish the topologically ordered phases and thereby to
detect the topological quantum phase transitions. Strongly correlated quantum many-body
systems complicate the scenario further, since the needed numerical computations are
generally demanding. For example the density matrix renormalization group calculations
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Figure 7.1.: Topologically ordered systems have an energy gap above the ground state, and have
the ground state degeneracy that depends on the non-trivial topology of the surface,
such as the torus, on which the system is defined. The entanglement entropy SA of a
subsystem A typically follows an area law SA = αLA− γ + . . ., where . . . represents
the sub-leading terms which vanish in the thermodynamic limit, α is a non-universal
constant, LA is the boundary length of A, and γ is called the topological entanglement
entropy which defines the long-range entanglement of the system. Another probe for
the topological order is the many-body Chern number on the torus. Topologically
ordered systems have short-range order and therefore the correlation function decays
exponentially. Topologically ordered systems can host the anyonic quasiparticles,
which have non-trivial fractional braiding properties and fractional charges. The
theme of the present chapter is that one can detect the topological quantum phase
transitions by creating the quasiparticles in the systems and by investigating their
properties.

are usually restricted for the one-dimensional systems or for the quasi two-dimensional
systems, such as the thin cylinders or the ladders [76]. Many systems, that may harbor
topologically ordered phases, are afflicted with the so called "sign problem" and thereby
excluding the investigations by the large-scale quantum Monte-Carlo simulations [257].

Some probes have been developed to probe the topological quantum phase transitions.
Examples include the ground state degeneracy [250], the topological entanglement entropy
[112, 128, 143], the many-body Chern number [210, 217, 176, 137], the spectral flow
[167, 193, 98], and the entanglement spectrum [193, 219, 94, 212, 268, 144]. We show
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an overview of the different probes in Fig. 7.1. However these probes are generally
expensive to compute, often rely on the particular choices of the boundary conditions, and
typically do not provide the complete information. Therefore there is a strong demand in
developing new probes to detect the topological quantum phase transitions.

In this chapter we demonstrate that the quasiparticles are a powerful tool in detecting the
topological quantum phase transitions. We know that the topologically ordered systems
can host anyons, which are neither fermions nor bosons. This can be revealed from
the fractional braiding statistics of the anyons. Additionally the anyons have fractional
charges. Therefore a direct way to show that a system is topologically ordered, is to
generate the anyons in the system and to demonstrate their properties. Both anyonic
braiding properties and fractional charge have been confirmed in numerical studies [11,
31, 262, 156, 153]. Here, we propose to use quasiparticles to detect phase transitions that
happen when a parameter in the Hamiltonian is varied. We commence by modifying the
Hamiltonian to trap the quasiparticles at well-defined positions in the ground state. In
the simplest case we can do this by adding a potential. Then we study the quasiparticle
properties as a function of the parameter. When the two phases do not support the same
set of quasiparticles, a change is seen at the phase transition point. The procedure works
for all types of topological orders, and hence for all types of anyons. And the method
does not require a particular choice of the boundary conditions.

We test the method on five concrete examples. In Sec. 7.1 we consider a lattice Moore-
Read fractional quantum Hall state on a square lattice and in Sec. 7.2 on a fractal lattice,
which undergoes a topological quantum phase transition as a function of the lattice filling
factor. We show that the anyon charges detect the topological quantum phase transition.
In Sec. 7.3, we investigate an interacting Hofstadter model in the absence and in Sec. 7.4
in the presence of disorder. The model in the absence of disorder has a Laughlin type
ground state which also undergoes a topological quantum phase transition as a function of
the lattice filling factor. We modify the Hamiltonian and create the anyons in the ground
state. We find that the anyon charges detect the topological quantum phase transition. In
Sec. 7.5, we study the Kitaev’s toric code model, which undergoes a topological quantum
phase transition when a sufficiently strong magnetic field is added. We create the anyons
in the ground state and show that the anyons dictate the topological quantum phase
transition. Among these models, we have included two, for which the phase transition
point is already known, since this allows us to compare with other methods and check the
reliability of the anyon approach. For all the five rather different examples, we find that it
is sufficient to compute a relatively simple property, such as the charge of the anyons, to
determine the phase transition point. This means that the method is numerically cheap.

For the Moore-Read model on a square lattice, as for example, a large speed up is
found compared to previous computations of the topological entanglement entropy, and
this enables us to determine the transition point much more accurately. For the interacting
Hofstadter model, we only need two exact diagonalizations for each data point, which is
much less than what is needed to compute the many-body Chern number. Finally, for the
model on the fractal, we do not know of other methods that could be used for detecting
the phase transition.

We conclude the chapter in Sec. 7.6. This chapter is based on parts of the following
Ref. [155]:

97



[1] : Sourav Manna, N. S. Srivatsa, Julia Wildeboer and Anne E. B. Nielsen, "Quasi-
particles as detector of quantum phase transitions", [submitted to Physical Review Re-
search (Rapid Com.)], arXiv:1909.02046 (2019)

7.1 Detection of a topological quantum phase
transition in a Moore-Read state on a square
lattice
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Figure 7.2.: For the computations in this section, we use square lattices with a roughly circular
edge. The lattice sites are shown as black circles, and the particles are shown as
red disks. There can be either 0, 1, or 2 particles on each site. The total number of
particles M, the number of lattice sites N, the flux per lattice site η , and the number
of flux units per particle q fulfil the relation q = ηN/M. The phase transition is
encountered as a function of η for fixed ηN and fixed M. In other words, we increase
η by reducing the number of lattice sites as shown, while keeping the number of
particles M and the total magnetic flux ηN fixed. We here take q = 2 and M = 40.

We introduced the family of the lattice Moore-Read states on a two-dimensional
complex plane in Chapter-3 in Sec. 3.3. In this section we investigate a particular member
of that family. The properties of the state can be investigated by using the Monte-Carlo

98 Chapter 7 Quasiparticles Detect Topological Quantum Phase Transi-
tions



simulations. Earlier studies in Ref. [69] revealed, by computations of the topological
entanglement entropy γ , that this state undergoes a topological quantum phase transition
as a function of the lattice filling factor η . The transition point was found to be between
a lattice filling factor of 1/8 and 1/2. Here we show that the topological quantum
phase transition point can be obtained based on the computations of the quasiparticle
charges in the system. Numerically our computation is significantly cheaper than the
γ computation, which involves the calculations of the entanglement properties. These
are done by using the replica trick, which needs to consider two copies of the system.
And therefore the simulated system carries twice as many particles and twice as many
lattice sites as the physical system. On the other hand no doubling is needed to compute
the quasiparticle charges. In fact, for many systems, it is only possible to compute the
topological entanglement entropy for a range of system sizes that are too small to allow
for an extrapolation to the thermodynamic limit. For the system considered here, the
simplifications mean that we can obtain results for many more lattice fillings and thereby
determine the phase transition point more accurately than in Ref. [69].

For the computations in this section we would like to vary the lattice filling factor
M/N = η/q, without changing the number of flux units per particle. This can be done by
varying η and N, while keeping the total flux ηN and the number of particles M fixed as
illustrated in Fig. 7.2.

7.1.1 Topological properties

It was shown in Ref. [69] that the particular member of the lattice Moore-Read family
at the Landau level filling factor 5/2, as defined by q = 2 and n j ∈ {0,1,2}, undergoes
a topological quantum phase transition while changing η . In the topological phase, the
finite value of the topological entanglement entropy γ is related to the total quantum
dimension D of the anyons in the system as [278]

γ = lnD, where D =
√

∑
i

d2
i , (7.1)

and di is the quantum dimension of the ith anyon. For the Moore-Read family of states
we have

D =
√

4q. (7.2)

It was shown in Ref. [69] that for η = 1/4 the value of γ is close to 1
2 ln(8), which

indicates that the system is in the topological phase which is the same as the continuum
Moore-Read state, and for η = 1 the value of γ ' 0 which defines the non-topological
phase. This shows that there is a phase transition in the interval η ∈ {1/4,1} and η

serves as a parameter that drives the system back and forth between a topological and a
non-topological phase. The analytical forms of the states in the absence of the anyons, in
the presence of the Abelian type anyons, and in the presence of the two non-Abelian type
anyons in the systems are given in Eqs. (3.51), (3.59) and (3.68) respectively. Following
the procedure as shown in Chapter-4 in Sec. 4.2 and in Chapter-5 in Sec. 5.4 we find that
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both types of anyons have the right braiding statistics in the topological phase. We have
done this computation for one value of η = 1/3. We show below that the anyon charges
are sufficient to detect the topological quantum phase transition.

7.1.2 Excess charges and the topological quantum phase
transition detection

Figure 7.3.: In (a) we plot the absolute value of the excess charge Q+, as denoted by the red
circles, around w1 which is the position of one non-Abelian quasiparticle and the
absolute value of the excess charge Q−, as denoted by the blue squares, around w2
which is the position of another non-Abelian quasiparticle for the Moore-Read state
as a function of the flux per site η . In the topological phase, w1 and w2 are the
centers of the anyons, and Q+ and Q− are close to the absolute value of the charge
of the anyons, which is marked by the horizontal line at 1/4. In the non-topological
phase, Q+ and Q− may take any value. The plot shows a jump away from the
horizontal line when going from η � 0.44 to η � 0.46, so the data predict that the
phase transition point ηc is in the interval ηc ∈ [0.44,0.46]. We shade the topological
region η < ηc with yellow color and the non-topological region η > ηc with green
color. To test the robustness of the method, we do a similar computation for the
Moore-Read state hosting Abelian quasiparticles in (d), and this leads to the same
transition point and in this case the absolute value of the anyon charge is 1/2. In (b),
(c), (e), and (f), the coloring shows the density profiles below, where η � 0.44, and
above, where η � 0.46, the transition point. The lattice sites are shown as the black
circles, the point w1 is marked by a green star, and the point w2 is marked by a black
square. The plots in (b) and (c) are for the Moore-Read state hosting non-Abelian
quasiparticles, and the plots in (e) and (f) are for the Moore-Read state hosting
Abelian quasiparticles. The errorbars arising from the Monte-Carlo simulations are
of order 10−4.
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When the system is in the topological phase, the density of particles is constant in the
bulk. By density of particles, we mean 〈n(zi)〉= 〈Φ|ni|Φ〉, where |Φ〉 is the state of the
system. If anyons are present in the system, the density will differ from the bulk value in
a small region around each anyon. The number of particles missing on average in this
region compared to the bulk value is equal to the charge of the anyon, that is ±1/2 for the
Abelian anyons and ±1/4 for the non-Abelian anyons. In the non-topological phase, a
more complicated density pattern can arise, and in general there is no rule for how much
charge there should be within a given region. This suggests that we may be able to see
the phase transition by computing how many particles are missing on average within a
circular region of radius R around each wk, where R is large compared to the size of an
anyon at position wk, but small enough that other anyons are not inside the circle and
small compared to the smallest distance to the edge. The expectation is that the number
of particles missing is a constant within the topological phase and varies with η in the
non-topological phase.

The number of particles missing is given by the excess charge

Qk =−
N

∑
i=1

ρ(zi)θ(R−|zi−wk|), (7.3)

where the Heaviside step function θ(. . .) ensures that only the region inside the circle
contributes to Qk and the density profile

ρ(zi) = 〈n(zi)〉Q 6=0−〈n(zi)〉Q=0 (7.4)

is the difference in particle density between the state with Q 6= 0 and the state with Q = 0,
where Q is the number of anyons in the system. Below, we shall consider the case, where
the sum of the anyon charges is zero, i.e. ∑k pk = 0. For this case, ρ(zi) is zero in the
topological phase, not only in the bulk but also on the edge, if no anyons are in the vicinity.
It is therefore acceptable that the circular region contains part of the edge.

We compute Qk with Q = 2 and p1 =−p2 = 1 for both the non-Abelian and Abelian
anyons in the states. In other words, if the system is in the topological phase, there are
two anyons of opposite charge in the system. We choose R = |w1−w2|/2. We define the
quantities Q+ = |Q1| and Q− = |Q2| for the state with non-Abelian anyons. If the system
is in the topological phase, then Q+ and Q− are the absolute values of the charge of the
positively and negatively charged anyon respectively. That is we have Q+ = Q− = 1/4
up to finite size effects. Likewise, we define Q̄+ = |Q1| and Q̄− = |Q2| for the state with
Abelian anyons. If the system is in the topological phase, then Q̄+ = Q̄− = 1/2 up to
finite size effects. We fix the number of particles to be M = 40 and vary the number of
lattice sites from N = 316 to N = 80 to achieve different η values ranging from η ' 1/4
to η = 1. We keep ηN fixed throughout this interpolation.

We present the results in Fig. 7.3. From Fig. 7.3 (a), we observe that the excess charges
Q+ and Q− are close to 1/4 for η < ηc and fluctuate for η > ηc, where ηc ∈ [0.44,0.46].
The excess charges are hence able to detect the phase transition. In Fig. 7.3 (b) and 7.3
(c), we show the density profiles (7.4) for the state with non-Abelian anyons near the
phase transition point for η ' 0.44, which is in the topological phase, and for η ' 0.46,
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which is in theb non-topological phase, respectively. It is seen that there is less screening
for η ' 0.46 than for η ' 0.44.

As a test of the robustness of the approach, we also use the Abelian anyons in the state
to detect the phase transition. The results are given in the bottom part of Fig. 7.3. We
observe that the prediction for the phase transition is, indeed, the same as before. We have
also checked that the fact that there is large jump in the excess charges from η ' 0.44 to
η ' 0.46 is insensitive to the precise choice of the distance |w1−w2|.

7.2 Detection of a topological quantum phase
transition in a Moore-Read state on a fractal
lattice

  

Figure 7.4.: Excess charges Q1 and Q2 for the Moore-Read state |Ψa〉 on a Sierpinski gasket
fractal lattice (inset) as a function of the flux per site η . In the topological phase, Q1
and −Q2 are close to the charge of the positive anyon (horizontal line at 1/4). In
the nontopological phase, Q1 and Q2 may take any value. The jump away from 1/4
predicts the transition point ηc ∈ [0.43,0.46]. The Monte Carlo errors are of order
10−4.

We next consider the Moore-Read model on a Sierpinski gasket fractal lattice. The
fractal lattice is not periodic, and we can therefore not apply methods, such as ground
state degeneracy, spectral flow, or many-body Chern number computations to detect a
possible phase transition. Methods based on entanglement computations do also not apply,
since we do not have a thorough understanding of entanglement properties of topological
many-body states on fractal lattices. Quasiparticle properties, on the contrary, can detect
a transition, as we will now show.
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Lattice Laughlin fractional quantum Hall models were recently constructed on fractals
[180], and we here consider a similar construction for the Moore-Read state. Specifically,
we define the state |Ψa〉 on a lattice constructed from the Sierpiński gasket with N = 243
triangles by placing one lattice site on the center of each triangle. In Fig. 7.4, we
vary the particle number M ∈ [24,96] to have different η ∈ [0.19,0.79] values and plot
the excess charges as a function of η . The excess charges are Q1 ≈ −Q2 ≈ 1/4 for
η < ηc and fluctuate for η > ηc, which reveals a phase transition at the transition point
ηc ∈ [0.43,0.46].

7.3 Detection of a topological quantum phase
transition in an interacting Hofstadter model

We study a Hofstadter model for hardcore bosons on a square lattice. This model is
a Bose-Hubbard type model under a uniform background magnetic field on a square
lattice in the limit of hardcore interactions. Earlier studies in Refs. [79, 210] have shown
that this model exhibits a topological quantum phase transition, when the filling factor
of the lattice is varied, while the number of magnetic flux units per particle is kept
fixed. This was concluded based on computations of the many-body Chern number. The
system sizes that can be reached with exact diagonalization are too small to allow for
a computation of the topological entanglement entropy. We show that one can detect
the topological quantum phase transition from the charges of the anyons. We perform
the computations for open boundary conditions using exact diagonalization. In our case,
two diagonalizations per value of the lattice filling factor are sufficient to determine the
phase transition point. This is significantly faster than the Chern number computation,
where a large number of diagonalizations are carried out for each data point, because the
eigenstates are needed for a grid of angles in two dimensions corresponding to different
twisted boundary conditions.

7.3.1 Interacting Hofstadter model

Our starting point is the Hofstadter model, which describes particles hopping on a two-
dimensional square lattice in the presence of a magnetic field pointing in the direction
perpendicular to the plane. Hopping is allowed between nearest neighbor sites, and the
magnetic field is taken into account through the Peierls substitution, i.e. by making the
hopping amplitudes complex. More precisely, the phases of the hopping amplitudes
are chosen in such a way that, whenever a particle hops around a closed loop, the
wavefunction acquires a phase, which is equal to the Aharonov-Bohm phase for a charged
particle encircling the same amount of magnetic flux.

We make this model interacting, by considering bosons that interact through a hardcore
interaction. In other words, we assume that it is not possible to have more than one boson
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on each site. For a lattice with N = Lx×Ly sites, the resulting Hamiltonian takes the
form

H0 =−
Lx−1

∑
x=1

Ly

∑
y=1

(
c†

x+1,ycx,ye−iπαy +H.c.
)

−
Lx

∑
x=1

Ly−1

∑
y=1

(
c†

x,y+1cx,yeiπαx +H.c.
)
,

(7.5)

where cx,y is the hardcore boson annihilation operator acting on the lattice site at the
position (x,y) with x ∈ {1, . . . ,Lx} and y ∈ {1, . . . ,Ly}. If a particle hops around a
plaquette, the phase acquired is 2πα . The number α is hence the magnetic flux through
each plaquette of the lattice measured in units of h/e, where h is Planck’s constant, and e
is the elementary charge. We here consider the case, where the number of flux units per
particle is two, i.e. Nα/M = 2.

The phase transition is encountered, when we vary α , keeping Nα/M = 2. Equivalently,
we can say that we vary the lattice filling factor M/N, while keeping Nα/M = 2. It was
found in [79, 210] that the Laughlin fractional quantum Hall state provides a reasonable
description of the ground state of the model for α . 0.3. Computations of the Chern
number showed that the model remains topological for even higher values of α . It was
found that the model is still topological for α = 0.375, but non-topological for α = 0.400.
The phase transition must hence happen in this interval.

7.3.2 Creation of anyons in the ground state

We now test the ability of the anyons in the model to detect the phase transition. The
starting point is to modify the Hamiltonian, so that anyons are trapped in the ground state,
if the system is in the topological phase. It is already known that this can be done by
adding a local potential with a strength that is sufficiently large compared to the hopping
amplitude. Specifically, we shall here choose the potential

HV =V nx1,y1−V nx2,y2 , (x1,y1) 6= (x2,y2), (7.6)

where V � 1, nx,y = c†
x,ycx,y is the number operator, and (x1,y1) and (x2,y2) are two of

the lattice sites. This potential traps one positively charged anyon at the site (x1,y1) and
one negatively charged anyon at the site (x2,y2). The physical picture behind this is
that the positive potential at the site (x1,y1) gives rise to an energy penalty if this site
is occupied, and hence the system tends to reduce the density of particles at this site,
corresponding to a positively charged anyon. At the site (x2,y2), the potential will instead
favor an increase in particle density, corresponding to a negatively charged anyon.
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Figure 7.5.: In (a) we plot the absolute values of the excess charges Q+, as denoted by the red
circles, and Q−, as denoted by the blue squares, as a function of the magnetic flux
per plaquette α . The expected absolute value of the excess charges in the topological
phase is 1/2, as marked by the solid black line. Q+ and Q− display a transition when
going from α = 0.375 to α � 0.389, so the data predict that the phase transition point
αc is in the interval αc ∈ [0.375,0.389]. We shade the topological region α < αc

with yellow color and the non-topological region α > αc with green color. In (b) and
(c), the coloring shows the density profiles from Eq. (7.7) below, where α = 0.375,
and above, where α � 0.389, the transition point. The lattice sites are shown as
the black circles, and ±V marks the lattice sites, where the trapping potentials are
applied.

7.3.3 Excess charges and the topological quantum phase
transition detection

Similar to the case above, we use the excess charge in a region around the sites (x1,y1)
and (x2,y2) to detect the phase transition. We define the density profile as

ρ(x+ iy) = �nx,y�H0+HV −�nx,y�H0 , (7.7)

where �nx,y�H0+HV is the particle density, when the trapping potential is present, and
�nx,y�H0 is the particle density, when the trapping potential is absent. The excess charge is
then defined as in Eq. (7.3) with w1 = x1+ iy1 and w2 = x2+ iy2. We use the symbol Q+
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to denote the absolute value of the excess charge around the site (x1,y1), and the symbol
Q− to denote the absolute value of the excess charge around the site (x2,y2). For all the
numerical computations in this section, we choose R such that the circular region includes
all sites up to the second nearest neighbor sites. The absolute value of the excess charge
should be close to 1/2 in the topological region, while it can take any value and may vary
with α in the non-topological region.

M N Lx×Ly α dim(H) Q+ Q−
2 24 6 × 4 0.17 276 0.491 0.507
3 28 7 × 4 0.21 3276 0.476 0.522
3 24 6 × 4 0.25 2024 0.519 0.478
4 28 7 × 4 0.28 20475 0.521 0.475
4 24 6 × 4 0.33 10626 0.475 0.520
5 28 7 × 4 0.35 98280 0.465 0.532
6 32 8 × 4 0.37 906192 0.466 0.533
7 36 6 × 6 0.39 8347680 0.380 0.610
5 25 5 × 5 0.4 53130 0.332 0.666
5 24 6 × 4 0.42 42504 0.348 0.650
6 28 7 × 4 0.43 376740 0.250 0.747
6 25 5 × 5 0.48 177100 0.278 0.719
7 28 7 × 4 0.5 1184040 0.284 0.714
7 25 5 × 5 0.56 480700 0.402 0.595
7 24 6 × 4 0.58 346104 0.440 0.557

Table 7.1.: We show here the different choices we make for the number of particles M, the shapes
and sizes N = Lx×Ly of the lattices, and the fluxes per plaquette α = 2M/N. The
quantity dim(H) is the dimension of the corresponding Hilbert spaces. We display the
data for the absolute values of the excess charges Q+ and Q−. There is a significant
change in Q+ and Q−, when going from α = 0.375 to α ' 0.389.

We take values of M and N, as listed in Tab. 7.1, which are numerically accessible
for exact diagonalization, and for each choice α = 2M/N. This gives us different values
in the interval α ∈ [0.1,0.6]. We present the results in Fig. 7.5, where we plot Q+ and
Q− as a function of α in (a) and show examples of the density profiles just above and
below the transition point in (b) and (c). It is seen that Q+ and Q− are quite close to
1/2 for α values up to 0.375. From α = 0.375 to α ' 0.389, on the other hand, there
is a quite large change in Q+ and Q−, and for higher values of α , the values of Q+ and
Q− deviate much more from 1/2 than for low α . The data hence predict that the phase
transition value αc lies in the interval αc ∈ [0.375,0.389]. This is consistent with the
result αc ∈ [0.375,0.400] found in Refs. [79, 210].
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7.4 Detection of a topological quantum phase
transition in a disordered interacting
Hofstadter model

Figure 7.6.: Excess charges Q1 and Q2 as a function of the disorder strength h for the interacting
Hofstadter model with M = 3, N = 24, and α = 0.25. In the topological phase,
Q1 ≈−Q2 ≈ 1/2 (horizontal line), and the observed change away from this value
predicts the transition point hc � 1.5. We average over 2000 statistically independent
disorder realizations for each h to ensure convergence of the data.

We consider the Hamiltonian

H0+
Lx

∑
x=1

Ly

∑
y=1

hx,ynx,y, (7.8)

last term in (7.8) is the disordered potential, and hx,y ∈ [−h,h] is drawn from a uniform
distribution of width 2h, where h is the disorder strength.

We choose a point, which is deep in the topological phase for h= 0, namely M = 3,
N = 24, and α = 0.25, and plot the excess charges as a function of the disorder strength h
in Fig. 7.6. We observe that Q1 and −Q2 are close to 1/2 up to h� 1.5, while the excess
charges deviate more from 1/2 for h> 1.5. The data hence predict the phase transition to
happen at hc � 1.5.
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7.5 Detection of a topological quantum phase
transition in the Kitaev’s toric code model
We study Kitaev’s toric code [126, 125] on a square lattice with periodic boundary
conditions, which is known to exhibit a Z2 topologically ordered phase. Adding a
sufficiently strong, uniform magnetic field drives the system into a polarized phase [237,
238, 58, 269, 75]. Here we show that anyons inserted into the system are able to detect
this phase transition. Our computations rely on exact diagonalization for a system with
18 spins and are hence relatively cheap to do numerically. We find that the anyons are
significantly better at predicting the phase transition point than the energy gap closing for
the same system size.

7.5.1 The Kitaev’s toric code model
Here we consider the Kitaev’s toric code model [126, 125] constructed on a Nx×Ny
square lattice. There is a Pauli spin operator on each edge as illustrated in Fig. 7.7 (a).
Therefore the total number of the spins is

N = 2NxNy (7.9)

and hence the Hilbert space dimension is 2N . We write the Hamiltonian as

HTC =−∑
p

Bp−∑
s

As, (7.10)

where the sums are over all the plaquettes p and over all the stars s of the lattice. The
plaquette operator Bp acts on the four spins on the bonds which surround the plaquette p,
and the star operator As acts on the four spins on the bonds which surround the star s, as
shown in Fig. 7.7 (a). We write the operators as

Bp = ∏
i∈p

σ
z
i and As = ∏

i∈s
σ

x
i , (7.11)

where {σ x
i , σ

y
i , σ

z
i } is the set of the Pauli matrices acting on the ith edge. There are N/2

of the Bp operators and there are N/2 of the As operators. The As and the Bp operators
commute with each other. Hence we write

[Bp,Bp′ ] = 0, [As,As′ ] = 0, [Bp,As] = 0 (7.12)

for all p, p′,s,s′. We note that when Bp and As do not share any edge then they commute
and when they do share edges then, due to the underlying geometric structure, they
must share two edges. Therefore the commutation relation between each shared σ x

i
and σ

z
i gives rise to a negative sign. Owing to the two shared edges the net sign is

accumulated as positive and the two operators commute. This makes the Hamiltonian
HTC exactly solvable, and the ground states are those states for which each eigenvalue of
the Bp operator is equal to 1 and each eigenvalue of the As operator is equal to 1. The
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ground state space is four-fold degenerate on the torus, that is with the periodic boundary
conditions. This can be noted as follows. On the torus we have the following conditions

∏
s

As = 1 and ∏
p

Bp = 1, (7.13)

since in the first product every σ x
i spin operator appears twice and in the second product

every σ
z
i spin operator appears twice. Hence for a lattice of N/2 sites, there are N/2−1

independent choices of the star eigenvalues and are N/2−1 independent choices of the
plaquette eigenvalues, because of the constraints as given in Eq. (7.13). Consequently
there are 22(N/2−1) independent specifications of the star eigenvalues and of the plaquette
eigenvalues. However, the total Hilbert space dimension is 2N . Therefore we count the
degeneracy as

2N

22(N/2−1)
= 4, (7.14)

that is for every specification of the star and of the plaquette eigenvalues, there are four
independent states. The model exhibits a Z2 topological order with the Abelian anyonic
excitations.

7.5.2 Creation of anyons in the ground state

In the toric code, the states containing anyons can be created by applying certain string
operators to the ground state. The string operator either changes the eigenvalues of the
two As operators to −1 or the eigenvalues of the two Bp operators to −1. In the former
case, two electric excitations es are created, and in the latter case two magnetic excitations
mp are created. The state acquires a minus sign if one mp is moved around one es or if
one es is moved around one mp, and therefore the excitations are Abelian anyons. More
precisely the excitations are mutual semions, as the counter-clockwise exchange of the es
and mp gives rise to the phase factor eiπ/2 on the state.

In our case, we instead modify the toric code Hamiltonian, such that anyons are created
in the ground states. The idea is to add suitable operators to the Hamiltonian HTC such
that the signs of the two of the Bp or the signs of the two of the As operators are inverted.
The motivation behind this way of creating anyons is as follows. While the toric code
model is under perturbations, like under an added magnetic field, then the model is no
longer exactly solvable and the method of creating anyons by using string operators, as
in the original toric code model, is not valid. But our method of creating anyons in the
ground state, by providing energy penalties, is still valid. In particular, the ground states
of the Hamiltonian

HTC +Hm, (7.15)

where
Hm = 2 ∏

i∈p1

σ
z
i +2 ∏

i∈p2

σ
z
i , (7.16)
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has one mp on each of the plaquettes p1 and p2. Similarly, the ground states of the
Hamiltonian

HTC +He, (7.17)

where
He = 2 ∏

i∈s1

σ
x
i +2 ∏

i∈s2

σ
x
i , (7.18)

has one es on each of the stars s1 and s2.

7.5.3 Detection of the topological quantum phase transition

We aspire to drive the system through a phase transition. We do this by turning on a
uniform magnetic field in the z-direction or in the y-direction, which amounts to adding
the term

Hk
λ
= λ ∑

i
σ

k
i , where k ∈ {z,y}, (7.19)

to the Hamiltonian. Here λ > 0 is proportional to the strength of the field. Owing to the
term Hk

λ
, which does not commute with HTC in Eq. (7.10), the model

HTC +Hk
λ

(7.20)

is not exactly solvable. For sufficiently large λ , the term Hk
λ

will drive the system into a
polarized phase, as it is energetically favorable to polarize all the spins.

Previous investigations, based on perturbative, analytical calculations and tensor net-
work studies [237, 238, 58], have shown that the model

HTC +Hz
λ

(7.21)

has a second order phase transition at the field strength λc ' 0.33, while the model

HTC +Hy
λ

(7.22)

has a first order phase transition at the field strength λc = 1. One can also determine
the phase transition point from exact diagonalization using an order parameter for the
magnetic phase. Specifically, we plot the magnetization per spin Mk

s and the magnetic
susceptibility χk

s per spin,

Mk
s =

1
N
〈∑

i
σ

k
i 〉 and χ

k
s =−∂Mk

s
∂λ

, (7.23)

for the ground state of

HTC +Hk
λ

(7.24)
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Figure 7.7.: In (a) we show the toric code model with N = 18 spins, as pictured by the arrows, on
the square lattice and on the torus. The spins reside on the middle of each edge. We
denote the plaquette operator by Bp, as shown by the red square, and the star operator
by As, as shown by the blue star, respectively. We show that two types of anyons
can be created, namely the mp, as symbolized by the red circles, in the plaquettes
p1 and p2 and the es, as symbolized by the blue crosses, in the stars s1 and s2 by
using Eq. (7.16) and Eq. (7.18), respectively. In (b) and (c) we consider the case of a
magnetic field in the z direction. In (b) we plot the quantity Es, as shown by the blue
squares, from Eq. (7.25) as the measure of the anyons and the quantityMz

s , as shown
by the red triangles, from Eq. (7.23) as the magnetization of the system as a function
of the external magnetic field strength λ . We note that Es gradually tends to zero
from the value −1, at λ = 0, and that Mz

s gradually approaches the value −1 from
zero, at λ = 0. In (c) we show the quantity χe, as shown by the blue squares, and the
quantity χz

s , as shown by the red triangles, from Eq. (7.25) as a function of λ . We
note that the peak in χe and in χz

s are consistent with λc � 0.33. In (d) we consider
the case of a magnetic field in the y direction and we plot the quantity Es, as shown
by the blue squares, the quantityMp, as shown by the pink stars, from Eq. (7.25) as
the measures of the anyons and the quantity My

s , as shown by the red triangles, from
Eq. (7.23) as the magnetization per spin of the system as a function λ . We notice
that both Es andMp gradually tends to zero from the value −1, at λ = 0, and thatMy

s

gradually approaches the value −1 from zero, at λ = 0. We note that the transition is
at around λc � 1.0. The insets in (c) and (d) show the energy gap ∆E, as denoted by
the magenta crosses, between the fourth and the fifth energy eigenstate as a function
of λ . We choose these states since the ground state of the toric code is fourfold
degenerate. All in (b), (c), and (d) we show the color gradient from the yellow, which
is for small λ and hence signifies the topological phase, to the green, which is for
large λ and hence signifies the non-topological phase, as plotted according to the
value of Es.
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in Fig. 7.7. The results are consistent with a transition around 0.33 when k = z, as shown
in Fig. 7.7 (b), (c) and a transition around 1 when k = y, as shown in Fig. 7.7 (c).

We now show that the transition can be detected by studying the anyons. Similarly to
the examples in the previous sections, we do not need to compute the braiding properties
to find the transition point. Instead we compute the quantities

Mp = 〈∏
i∈p

σ
z
i 〉, Es = 〈∏

i∈s
σ

x
i 〉, χe =

∂Es

∂λ
(7.25)

to detect the anyons in the system, where

s ∈ {s1,s2} and p ∈ {p1, p2}. (7.26)

We note that Es =−1 and Mp =−1 signify the presence of the anyons in those stars and
plaquettes respectively. In the fully polarized phase, on the other hand, both Es and Mp
vanish when k = y and Es vanishes and Mp acquires a value +1 when k = z. Below we
study these two cases.

(a). Case when k = z

We use exact diagonalization to compute Es and χe for the ground states of the Hamilto-
nian

HTC +He +Hz
λ

(7.27)

as a function of λ , as shown in Fig. 7.7 (a) and (b), respectively. We note that Es
changes from −1 in the topological phase to 0 in the polarized phase as expected. The
phase transition point is consistent with λc ' 0.33. Both the prediction for the phase
transition point and the width of the transition region, which is due to finite size effects,
are comparable to the same quantities obtained from the magnetic order parameter. The
energy gap, as shown in Fig. 7.7 (b), closes only at λ ' 0.7, which is quite far from
λc ' 0.33. The anyons hence reproduce the transition point found in Ref. [58] more
accurately than the energy gap closing for the same system size.

We could also have chosen to study Mp. This expectation value is, however, not a good
choice to detect the topological quantum phase transition for the following reason. The
operator

Bp = ∏
i∈p

σ
z
i (7.28)

is itself one of the plaquette operators, and it commutes with all terms in the Hamilto-
nian

HTC +Hm +Hz
λ
. (7.29)
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This means that all eigenstates of the Hamiltonian are also eigenstates of Bp, and half
of these eigenstates have Bp eigenvalue +1 and the other half have eigenvalue −1. The
value of Mp is hence always either +1 or −1, and it only measures whether the ground
state has Bp eigenvalue +1 or −1. We find that the first transition to a ground state with
Bp eigenvalue +1 happens around λ ' 2.08, but this does not exclude gap closings at
smaller λ values. On the contrary, He does not commute with Hz

λ
, and the above problems

are hence not encountered for Es.

We point out that we have also investigated the case when k = x. In this case the roles
of the quantities Es and Mp are interchanged. That is in this case Mp is sensitive to the
phase transition and capture the same phase transition point consistent with λc ' 0.33,
whereas Es is insensitive and shows the the first transition from a ground state with As
eigenvalue −1 to a ground state with As eigenvalue +1 around λ ' 2.08. This scenario
is expected since the Kitaev’s toric code model remains the same if we interchange the
roles of the Pauli spin operators in defining the plaquettes and the stars.

(b). Case when k = y

We use exact diagonalization to compute Es and Mp for the ground states of the Hamilto-
nian

HTC +He +Hy
λ

(7.30)

as a function of λ , as shown in Fig. 7.7 (c). We note that both Es and Mp change from
−1 in the topological phase to 0 in the polarized phase as expected. The phase transition
point is around λc ' 1.0. In this case, the transition is sharper than for the magnetic order
parameter. The anyons also better reproduce the transition point λc = 1.0 found in Ref.
[58] than the energy gap closing, which happens around λ ' 1.2 for the same system
size. We notice that, since Hy

λ
does not commute either with He or with Hm, both the

quantities Es and Mp are sensitive to the phase transition and capture the same phase
transition point.

7.6 Conclusions
In this chapter we have benchmarked the quasiparticles as the topological quantum phase
transitions detector. Topologically ordered systems can host the anyonic quasiparticles
with particular braiding properties and particular fractional charges. The anyons can be
trapped in the ground state of the system by adding the suitable trapping operators to
the Hamiltonian. As long as the quasiparticles are anyonic, we know that the system is
topologically ordered. We now change a parameter in the Hamiltonian, which could drive
the system into a non-topological phase or into another topological phase with a different
set of anyons. When looking at a type of anyons that is only supported on one side of
the transition, the anyons must undergo a change, when the phase transition is crossed.
The main idea of this chapter is to use this change to detect the topological quantum
phase transitions. We have tested this approach for the five different cases as follows. We
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have taken models on a square lattice and on a fractal lattice with an analytical lattice
Moore-Read fractional quantum Hall state as the ground state and thereby having the
chiral topological order. The model exhibits a phase transition as a function of the lattice
filling factor. We have created the anyonic quasiparticles in the model and have shown that
the quasiparticle charges detect the phase transition. We have investigated an interacting
Hofstadter model, which is a fractional Chern insulator model, having the ground state as
the Laughlin type fractional quantum Hall state and thereby having the chiral topological
order. The model encounters a phase transition as a function of the lattice filling factor.
We have studied this model both in the presence and in the absence of disorder. We
have modified the Hamiltonian to trap the anyonic quasiparticles in the ground state and
have demonstrated that the quasiparticle charges detect the phase transition. We have
researched the stability of the topological phase of the Kitaev’s toric code model, having
the Z2 topological order, under the applications of the external magnetic fields in different
directions. We have modified the Hamiltonians to trap the anyonic quasiparticles in the
ground state and in all cases, we have found that the quasiparticles can accurately detect
the quantum phase transition.

If we are able to do the robust braiding in a system with results corresponding to a
particular topological order, then we know that the system allows these braiding properties.
The studied examples show, however, that the phase transition point can often be detected
by computing a simpler property, such as the charge of the anyons. This makes the
computations numerically cheap.

There is currently a high demand for finding appropriate methods to detect topological
quantum phase transitions, both for numerical investigations and for experimental imple-
mentations. The approach suggested here is particularly direct, since, to fully exploit the
interesting properties of topologically ordered systems, one needs to be able to create
anyons in the systems, move the anyons around in controlled ways, and measure their
properties. In the interacting Hofstadter model, the anyons can be created by adding
a local potential, and the charge of the anyons used to detect the phase transition can
be measured by measuring the expectation value of the number of particles on each
site. Both of these can be done in experiments with ultracold atoms in optical lattices
[249, 188]. For the toric code model, the anyons are harder to create. It is interesting to
note, however, that the operators needed to create the anyons are of the same type as the
operators already appearing in the Hamiltonian, so if one finds a way to implement the
Hamiltonian experimentally, one can also create the anyons.

The ideas presented in this work can be applied to any type of topological system with
anyonic quasiparticles. In the future, it would be interesting to test the ideas for other
types of systems. One could, as for example, study what quasiparticles tell us about
transitions between different non-topological phases. It would also be interesting to apply
similar ideas to gapless phases.
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Spin-1/2 Chain and
Ladder Models with
Two-Body Interactions
and Analytical Ground
States

8

„What I cannot create, I do not understand.

— Richard P. Feynman

Models that can be solved partially or fully by using analytical tools play a crucial
role to illuminate the physics of strongly correlated quantum many-body systems. They
overcome, in particular cases, the bottleneck that the resources needed to do numerical
computations generally grow exponentially with system size, they provide insight into
mechanisms lying behind many-body phenomena, and they can be used to test numerical
approximation schemes.

A number of different exactly solvable models have been found in one-dimensional
systems. These models can be grouped into a few categories [56, 78]. One member is the
Heisenberg spin model [168] and other related models in one-dimension [161, 264] with
their exact solutions by Bethe’s ansatz [82]. Another member is the Tomonaga-Luttinger
liquids [83, 151, 222], solved by the bosonization techniques. These models reveal the
non Fermi-liquid properties of one-dimensional fermionic systems. Another family are
models related to the Calogero-Sutherland model [215] with long range interactions. The
Calogero-Sutherland model is defined in the continuum, and a lattice spin version of the
model was found by Haldane and Shastry [80, 205]. In addition, tensor networks provide
an efficient tool to find models with known ground states and short range interactions [1,
61, 62].

Important works have also been done in the context of exactly solvable ladder models,
as for example in Refs. [248, 146, 51, 54, 223, 18, 59, 235]. An exactly solvable spin
ladder with biquadratic interactions has been obtained via the Bethe’s ansatz in Ref. [248].
In Ref. [54], a spin ladder model with interactions between spins on neighboring rungs,
and in [235], behavior of the two leg frustrated quantum spin-1/2 ladder containing
Heisenberg intra-rung and Ising inter-rung interactions has been studied. A three leg
spin ladder with isotropic Heisenberg interactions and additional many-body terms in the
context of magnetization is discussed in Ref. [51], and recently entanglement entropy has
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Figure 8.1.: We consider a model, in which the lattice points or the spins are placed on the surface
of a cylinder. The middle cylinder depicts the two-dimensional generalization of
the one-dimensional Haldane-Shastry model, which can be defined for spins on
an arbitrary lattice. In general, it has two- and three-body interactions. The one-
dimensional Haldane-Shastry model, as shown on the upper most cylinder, is a
special case with only two-body interactions. In this chapter, we show that if the
positions of the spins are restricted to the blue lines, as shown on the lower most
cylinder, we also get a model with only two-body interactions.

been investigated for an exactly solvable two leg spin ladder which contains three body
interactions in Ref. [59].

In this chapter, we construct the family of spin-1/2 chain and ladder models with
SU(2) invariant Hamiltonians having two-body interactions and analytical ground states
that are related to the one-dimensional Haldane-Shastry model [211]. In the original
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one-dimensional Haldane-Shastry model, N equidistant spin-1/2 particles are arranged
on a one-dimensional circle and interact antiferromagnetically through an exchange
interaction. The interaction strength is inversely proportional to the square of the chord
distance between two spins on the circle. The Hamiltonian of the one-dimensional
Haldane-Shastry model

HHS =
N

∑
i 6= j

[
N
π

sin
(

i− j
N

π

)]−2

Si ·S j (8.1)

is exactly solvable up to all of its ground and excited states. An interesting feature of
this model is that it contains elementary excitations named spinons, which are spin-
1/2 particles obeying semion statistics. The possibility of having a one-dimensional
hyperbolic version of the Haldane-Shastry model with infinitely many spins has been
investigated by Inozemtsev [103].

A generalization of the one-dimensional Haldane-Shastry model, which is valid for
arbitrary lattices on a cylinder surface, has been found recently [171] and is illustrated in
Fig. 8.1. The model has two- and three-body interactions, and the ground state, but not
the excited states, is known analytically. In two-dimensions, the ground state is closely
related to the Kalmeyer-Laughlin state [116] which is the spin version of the bosonic
Laughlin state at half filling. It is known that if one restricts the positions of the spins
to a circle around the cylinder, one gets a two-body model. If, in addition, the spins are
uniformly distributed on the circle, as visualized on the upper most cylinder in Fig. 8.1,
the model reduces to the one-dimensional Haldane-Shastry model [172]. A different
choice of the spin positions gives a one-dimensional Haldane-Shastry model with open
boundary conditions [228].

Here, we show that there is also a different way to obtain a family of two-body models,
and we investigate the properties of some members of this family. More specifically, the
two-body models are obtained, when the spin positions are restricted to be on the two
blue lines depicted on the lower most cylinder in Fig. 8.1. In particular, this allows us to
construct a family of one-dimensional models and of ladder models with only two-body
interactions and analytical ground states. It is interesting to ask, whether the properties of
these models are similar to those of the original one-dimensional Haldane-Shastry model
or not. Our investigations show that the properties of the models depend on how large
the circumference of the cylinder is compared to the other length scales in the system.
If this ratio is large, the models have properties close to those of the one-dimensional
Haldane-Shastry model, and if the ratio is small, the wavefunction reduces to a product of
singlets. In between, we find an interesting behavior, where the correlations and entropy
display critical properties over short distances and exponential decay of correlations and
area law entropy for large distances. As the parameter controlling the ratio varies, the
length scale separating the two behaviors changes.

The chapter is organized as follows. In Sec. 8.1, we briefly recall the two-dimensional
Haldane-Shastry model for spins on an arbitrary lattice on the cylinder. In Sec. 8.2,
we discuss the one-dimensional Haldane-Shastry model on the circle. In Sec. 8.3, we
show that the two-dimensional Haldane-Shastry model reduces to a two-body model
for particular choices of the lattice. Special cases include spin chain models, which
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we analyze in Sec. 8.4, and ladder models, which we analyze in Sec. 8.5. Section 8.6
concludes the chapter. This chapter is based on the following Ref. [154]:

[1] : Sourav Manna and Anne E. B. Nielsen, "Chain and ladder models with two-body
interactions and analytical ground states", Physical Review B 97, 195143 (2018)

8.1 The two-dimensional Haldane-Shastry model

We first briefly recall the two-dimensional Haldane-Shastry model [171] on the cylinder.
The position of the jth spin on the cylinder is specified by the complex number Wj.
Re(Wj) is the position in the direction along the cylinder axis, and Im(Wj) is the position
in the perpendicular direction around the cylinder. We take the circumference of the
cylinder to be 2π , and therefore Im(Wj) is periodic with period 2π . We also define a
corresponding set of points z j in the complex plane through the mapping

z j = eW j . (8.2)

We shall assume throughout that all spins are at different positions, that is z j 6= zk whenever
j 6= k.

The local Hilbert space on site number j is spanned by the states |s j〉 with s j ∈ {−1,1}.
In the following, we choose the number of spins N to be even and consider the many-body
state

|ψ〉= ∑
s1,s2,...,sN

ψs1,s2,...,sN (z1,z2, . . . ,zN)|s1,s2, . . . ,sN〉 (8.3)

with

ψs1,s2,...,sN (z1,z2, . . . ,zN) = δs
N

∏
p=1

χp,sp

N

∏
j<k

(z j− zk)
1
2 (s jsk−1), (8.4)

which is the spin version of the bosonic Kalmeyer-Laughlin state at half filling. Here,
δs = 1 for ∑

N
j=1 s j = 0 and δs = 0 otherwise, and the phase factors are

χp,sp = exp[iπ(p−1)(sp +1)/2], (8.5)

since this ensures that (8.4) is a spin singlet [171]. The state (8.4) is invariant under
relabelling of the indices [13], and we can hence choose the numbering of the spins after
convenience.

We define a set of positive semi-definite and Hermitian operators

Hi =
1
2 ∑

j( 6=i)
|wi j|2−

2i
3 ∑

j 6=k( 6=i)
w̄i jwik Si · (S j×Sk)

+
2
3 ∑

j( 6=i)
|wi j|2 Si ·S j +

2
3 ∑

j 6=k( 6=i)
w̄i jwik S j ·Sk

(8.6)
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acting on the N spins. Here,

wi j =
g(zi)

(zi− z j)
+h(zi), (8.7)

where g and h are arbitrary functions of zi, w̄i j is the complex conjugate of wi j, and
Si = (Sx

i ,S
y
i ,S

z
i ) is the spin operator acting on the spin positioned at zi. We have |si〉 as

the eigenstates of Sz
i with eigenvalues si/2. We use the notation ∑p6=q as the sum over p

and q and ∑p( 6=q) as the sum over p only. Likewise, ∑p6=q( 6=r) means the sum over p and
q with p 6= q, p 6= r, and q 6= r.

It can be shown [171] that all the Hi, and also ∑i Si, annihilate the state (8.4). Any
linear combination of the Hi and ∑i, j Si · S j with non-negative coefficients is hence a
parent Hamiltonian for (8.4). In this chapter, we will use

H =
1
4 ∑

i
Hi (8.8)

as our Hamiltonian, unless specified otherwise.

8.2 The one-dimensional Haldane-Shastry model

The standard one-dimensional Haldane-Shastry model (8.1) is obtained as a special case
of the two-dimensional Haldane-Shastry model by choosing the Hamiltonian as [172]

HHS =
π2

2N2 ∑
i

Hi +
π2(N +1)

3N2 ∑
i, j

Si ·S j−
π2(N2 +5)

12N
(8.9)

and by putting

z j = exp(2πi j/N) and wi j =
2zi

(zi− z j)
−1. (8.10)

We note that the three-body term in Hi vanishes in this case, since w̄i j =−wi j. The ground
state is again given by (8.4) with z j = exp(2πi j/N). The standard one-dimensional
Haldane-Shastry model is a critical model belonging to the SU(2)1 Wess-Zumino-Witten
universality class [53]. For later comparison, we will now discuss a few important
properties of this model.

We first consider the spin-spin interaction strength bHS
i j , which is defined such that

HHS = ∑
i 6= j

bHS
i j Si ·S j +CHS, (8.11)

where CHS is a constant. Hence

bHS
i j =

[
N
π

sin
(

i− j
N

π

)]−2

= d−2
i j . (8.12)
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Here, di j is the chord distance between the spins i and j, when the spins are put on a
circle with circumference N. The spin-spin interaction hence decays as the inverse of the
square of the chord distance between the spins. For spins that are nearby each other, that
is for |i− j| � N, the chord distance is approximately the same as the distance along the
circle, and the expression simplifies to

bHS
i j ≈ (i− j)−2 with |i− j| � N. (8.13)

We next consider the spin-spin correlation function

〈Sz
jS

z
k〉=

∑s1,...,sN s jsk|ψs1,...,sN (z1, . . . ,zN)|2

4∑s1,...,sN |ψs1,...,sN (z1, . . . ,zN)|2
, (8.14)

which is the expectation value of a product of two spin operators Sz
j acting on different

lattice sites. In the standard one-dimensional Haldane-Shastry model, the spin-spin
correlation function can be computed analytically [172]. The analytical expression for
the correlation function simplifies to

〈Sz
j+kSz

j〉 ≈
π(−1)k

8N sin(πk/N)
− 1

4N2 sin2(πk/N)
(8.15)

in the limit k� 1 and N � 1 with k/N fixed. It follows that the correlation function
shows critical behavior with the power law decay

(−1)k/(8k) for 1� k� N. (8.16)

This is consistent with Haldane’s conjecture [23].

Finally, we consider the Renyi entropy of order two, which is defined as follows. We
divide the system into two parts A and B. In our case, A is the first x spins, and B is the
remaining N− x spins. The Renyi entanglement entropy gives the entanglement of one
part with the other part. Now, we construct the density matrix ρ = |ψ〉〈ψ| for the whole
system and evaluate the reduced density matrix of part A as ρA = TrB(ρ). Here, TrB(ρ)
is the trace of ρ over the spins in part B. The Renyi entanglement entropy of order two is
then given by

Sx =− ln[Tr(ρ2
A)]. (8.17)

The reason for considering this entanglement entropy is that it can be computed efficiently
using a Metropolis Monte-Carlo algorithm and the replica trick[44, 89].

The leading order behavior of the Renyi entropy of order α in a one-dimensional
critical system is generally given by [46, 96, 236, 37, 132, 36]

S(α)
x ≈ c

6η

(
1+

1
α

)
ln [ηN sin(πx/N)/π]+ constant, (8.18)

where α is the order of the Renyi entropy, c is the central charge of the underlying
conformal field theory, and η = 1 or η = 2 is for periodic or open boundary conditions
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respectively. The expected leading order behavior for the standard one-dimensional
Haldane-Shastry model is hence

Sx ≈
c
4

ln
[

N
π

sin
(

πx
N

)]
+ constant, (8.19)

which agrees with numerics [44] for c = 1. The numerical results for the Haldane-Shastry
model also show an oscillation with period 2, which is present in the subleading terms.

8.3 Two-body chain and ladder models
We now demonstrate that the Hamiltonian (8.8) also reduces to a two-body Hamiltonian
in other particular cases. Specifically, if we take all wi j to be real, the three-body terms in
(8.6) vanish, and the Hamiltonian simplifies to

H =
1
4 ∑

i
Hi = ∑

i 6= j
bi j Si ·S j +C, (8.20)

where C is a constant and

bi j =
1
6

w2
i j +

1
6 ∑

k( 6=i6= j)
wkiwk j (i 6= j) (8.21)

expresses the strength of the interaction between the spins at positions i and j. We note
that bi j = b ji.

Since

wi j =
g(zi)

(zi− z j)
+h(zi), (8.22)

where g and h are arbitrary functions of zi, we can achieve that wi j are real by choosing
all zi real and taking g and h to be real functions. Requiring zi to be real corresponds to
restricting Im(Wi) to be an integer times π . In other words, all the lattice points should be
on the blue lines on the lower most cylinder in Fig. 8.1.

Lattice points on the blue lines can be expressed in the form

z j = σ jeΛ f ( j), (8.23)

where σ j ∈ {−1,+1}, Λ is a positive number, and f ( j) ∈R is a real valued function of j.
If we take all σ j to be +1, we get a one-dimensional chain model, and if we take some σ j
to be +1 and some to be −1, we get a ladder model. Note that these models have open
boundary conditions by construction. In the following, we shall refer to the spins with
positive and negative σ j as the spins on the front and back of the cylinder respectively.
The circumference of the cylinder is fixed to 2π , and changing Λ corresponds to a scale
transformation in the direction parallel to the cylinder axis. If Λ is very small or large, the
circumference of the cylinder will be large or small respectively compared to the other
length scales in the system.
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8.3.1 Symmetries

The wavefunction (8.4) can be written as a conformal block times a normalization
constant, and it is therefore invariant under all global conformal transformations, that is
transformations of the type

z j→
az j +b
cz j +d

, (8.24)

where a, b, c, and d are complex numbers fulfilling ad− bc = 1. If we do the same
transformation on the Hamiltonian, we still have the same expression for the Hamiltonian,
but g and h are, in general, modified. The Hamiltonian is hence not invariant under the
full set of conformal transformations, unless g = h = 0, but for particular choices of g
and h, the Hamiltonian is invariant under a smaller set of transformations [71].

A particularly natural choice of Hamiltonian for the models we are looking at is to
take

wi j =
2zi

(zi− z j)
−1 =

(zi + z j)

(zi− z j)
. (8.25)

In that case, the Hamiltonian is invariant under the transformations

z j→ az j and z j→ z−1
j , (8.26)

where a is a constant number. These two transformations correspond, respectively, to
displacing the lattice points along the blue lines in Fig. 8.1 plus a rotation around the
cylinder axis if a is complex and to inverting the directions of the blue lines.

8.3.2 Spin-spin correlations and Renyi entropy

As part of our investigations of the properties of the models, we shall below compute the
spin-spin correlation function and the Renyi entropy of order two for particular cases. It
was found in Ref. [172] that if the spins are put on a circle around the cylinder and

wi j =
(zi + z j)

(zi− z j)
, (8.27)

then the spin-spin correlations fulfil the following set of linear equations

wi j〈Sz
i S

z
j〉+ ∑

k( 6=i6= j)
wik〈Sz

kSz
j〉+

1
4

wi j = 0. (8.28)

Following the same steps as in Ref. [172], we find that (8.28) also applies whenever all
the

wi j =
g(zi)

(zi− z j)
+h(zi) (8.29)

are real. Since as long as wi j are real, we can choose g(zi) and h(zi) after convenience.
This allows us to easily compute the spin-spin correlations for quite large systems. We
compute the Renyi entropy using Monte Carlo simulations.
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8.3.3 Small Λ limit and the decoupling of the legs

When Λ is sufficiently small, the circumference of the cylinder is large compared to all
other relevant length scales in the system, and it would be natural if the two legs decouple
in that limit. Specifically, we shall assume that

Λ| f ( j)− f (k)| � 1 (8.30)

for all j and k. In this section, we shall label the N+ spins with σ j > 0 from 1 to N+ and
the N− spins with σ j < 0 from N++1 to N = N++N−.

Let us first look at the Hamiltonian for

wi j =
(zi + z j)

(zi− z j)
. (8.31)

Using Eq. (8.30), we get

wi j =
σieΛ f (i)+σ jeΛ f ( j)

σieΛ f (i)−σ jeΛ f ( j)

≈
{

2/{Λ[ f (i)− f ( j)]} for σi = σ j
Λ[ f (i)− f ( j)]/2 for σi =−σ j

. (8.32)

In other words, wi j is large if the ith and the jth spins sit on the same leg and small if
they sit on different legs. Inserting this into Eq. (8.21), we observe that the spin-spin
interaction strength between spins sitting on the same leg is larger by a factor of Λ−2

compared to the spin-spin interaction strength between spins sitting on different legs.
When Eq. (8.30) applies, we can hence neglect the interactions between spins on different
legs.

In appendix D, we show that if there is an even number of spins on both of the legs,
then the wavefunction (8.4) reduces to

ψs1,...,sN (z1, . . . ,zN)≈ constant×ψs1,...,sN+
(z1, . . . ,zN+)×ψsN++1,...,sN (zN++1, . . . ,zN),

(8.33)

when (8.30) applies. In other words, the ladder model reduces to two copies of the chain
model with N+ and N− spins, respectively. If there is an odd number of spins on each of
the legs, the wavefunction is a sum of two terms

ψs1,...,sN (z1, . . . ,zN)≈ constant× [ψ
(1)
s1,...,sN+

(z1, . . . ,zN+)ψ
(−1)
sN++1,...,sN (zN++1, . . . ,zN)

−ψ
(−1)
s1,...,sN+

(z1, . . . ,zN+)ψ
(1)
sN++1,...,sN (zN++1, . . . ,zN)].

(8.34)
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Here, ψ(1) or ψ(−1) is defined as in Eq. (8.4), except that we now take δs to be one if the
sum of the spin variables s j is 1 or −1 respectively. Note, however, that since we found
above that the Hamiltonian with

wi j =
(zi + z j)

(zi− z j)
(8.35)

does not couple the two legs, each of these terms are individually zero energy eigenstates
of the Hamiltonian. The ground state is hence degenerate in that case.

8.3.4 Large Λ limit and the product of singlets
In appendices E and F, we show that the wavefunction (8.4) reduces to a product of N/2
singlets in the limit of sufficiently large Λ for almost all choices of the lattice coordinates
(8.23). Without loss of generality, we will here label the lattice sites such that

f ( j+1)≥ f ( j) for all j ∈ {1,2, . . . ,N−1}. (8.36)

Stated more precisely, we find that

ψs1,s2,...,sN (z1,z2, . . . ,zN) ∝ ψs(s1,s2)⊗ψs(s3,s4)⊗·· ·⊗ψs(sN−1,sN) (8.37)

when
exp{Λ[ f (2 j+1)− f (2 j)]}� 1 for all j ∈ {1,2, . . . ,N/2−1}. (8.38)

Here,
ψs(s2 j−1,s2 j) = (|+1,−1〉− |−1,+1〉)/

√
2 (8.39)

is the singlet wavefunction of the spins s2 j−1 and s2 j. Note that Eq. (8.38) can only be
fulfilled provided

f (2 j+1)> f (2 j) for all j ∈ {1,2, . . . ,N/2−1}. (8.40)

The wavefunction hence reduces to a product of singlets for sufficiently large Λ unless
there is a j for which lattice site number 2 j+1 and lattice site number 2 j are placed on
opposite sides of the cylinder. The same result applies also in the case, where the σk in
Eq. (8.23) are general phase factors. Finally, we comment that the pattern of singlets in
the state is fixed, because the model has open boundary conditions per construction. It is
hence always the first spin that forms a singlet with the second, the third spin that forms a
singlet with the fourth, and so on.

8.4 Uniform one-dimensional spin chain
In this section, we study the one-dimensional model obtained by choosing

z j = exp(2πλ j/N) (8.41)

124 Chapter 8 Spin-1/2 Chain and Ladder Models with Two-Body Interac-
tions and Analytical Ground States



Figure 8.2.: Mapping of the spin positions from the complex plane, as shown in the upper plot, to
the cylinder surface, as shown in the lower plot, for the uniform one-dimensional
chain. The radii of the consecutive circles in the plane are z j = exp(2πλ j/N).

in more detail. Here, N is the number of sites in the chain, which must be even, and we
shall take j ∈ {0,1, . . . ,N− 1}. The positive number λ controls the ratio between the
total length of the chain, which is 2πλ , and the circumference of the cylinder, which is
2π . Note that in this case a possible choice of ω jk is

w jk =
z j + zk

z j− zk
=

1
tanh[πλ ( j− k)/N]

. (8.42)

Figure 8.2 shows the lattice both in the complex plane and on the cylinder. In the
following, we first study the physics of the ground state by computing the spin-spin
correlations and the Renyi entropy. We then investigate the spin-spin interaction strengths
in the Hamiltonian. Finally, we briefly discuss possibilities to construct models with an
odd number of spins.

8.4.1 Spin-spin correlations

The spin-spin correlations are, in general, an important tool to extract information about
the physics of a system. The typical situation is that the ground state is either critical
with correlations that decay as a power law or noncritical with correlations that decay
exponentially. We now take a look at the spin-spin correlations (8.14) for the uniform
one-dimensional model by solving Eq. (8.28) numerically. We find that 〈Sz

jS
z
k〉 is positive

for | j−k| even and negative for | j−k| odd. To simplify the plots, we hence only consider
the absolute value of the correlations in the following.

Figs. 8.3 and 8.4 show the spin-spin correlations 〈Sz
jS

z
k〉 for a spin in the bulk of the

chain and for a spin on the edge, respectively. For the bulk spin, we fix j = N/2 and plot
the correlations as a function of k for k > j, and for the edge spin, we fix j = 0 and plot
the correlations as a function of k. These figures show several interesting features, as we
now discuss.
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Figure 8.3.: Absolute value of the spin-spin correlation �SzjS
z
k� for the uniform one-dimensional

chain as a function of (k− j)/N for j = N/2, which is the bulk spin, and k ∈
{N/2+1,N/2+2, . . . ,N−1}. For clarity we plot only some of these k values. The
different plots are for different values of λ , and there are N = 200, as symbolized
by red circles, N = 2500, as symbolized by blue circles, N = 5000, as symbolized
by magenta circles, N = 7500, as symbolized by green circles, or N = 10000, as
symbolized by black circles, spins in the chain. Note that in (c-f) the x-axis is in
log scale to the left of the vertical line and in linear scale to the right of the vertical
line. For λ = 0.25, the correlations are seen to follow a power law, and for λ = 100,
the correlations decay exponentially. For intermediate values of λ , the correlations
decay as a power law for short distances and exponentially for large distances, and
the transition is seen to occur approximately at the vertical line, which is positioned
at (k−N/2)/N = 1/(πλ ). In the standard one-dimensional Haldane-Shastry model
the correlations decay as the inverse of the distance, and in the region, where the
x-axis is in log scale, we plot a straight line with slope −1 for comparison. The
straight line plotted in the region to the right of the vertical line is proportional to
exp(−πλ (k−N/2)/N).
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Figure 8.4.: Absolute value of the spin-spin correlation �SzjS
z
k� for the uniform one-dimensional

chain as a function of (k− j)/N for j = 0, which is the edge spin, and k ∈
{1,2, . . . ,N−1}. For clarity we plot only some of these k values. The different plots
are for different values of λ , and there are N = 200, as symbolized by red circles,
N = 2500, as symbolized by blue circles, N = 5000, as symbolized by magenta
circles, N = 7500, as symbolized by green circles, or N = 10000, as symbolized by
black circles, spins in the chain. Note that in (c-f) the x-axis is in log scale to the left
of the vertical line and in linear scale to the right of the vertical line. For λ = 0.25,
the correlations are seen to follow a power law, and for λ = 100, the correlations
decay exponentially. For intermediate values of λ , the correlations decay as a power
law for short distances and exponentially for large distances, and the transition is seen
to occur approximately at the vertical line, which is positioned at k/N = 1/(πλ ). In
the standard one-dimensional Haldane-Shastry model the correlations decay as the
inverse of the distance, and in the region, where the x-axis is in log scale, we plot a
straight line with slope −1 for comparison. The straight line plotted in the region to
the right of the vertical line is proportional to exp(−πλk/N).
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For λ = 0.25, we observe that the correlations decay as the power law

|〈Sz
jS

z
k〉| ∝ | j− k|−1. (8.43)

Here, | j− k| is proportional to the distance between the spins. This is the same behavior
as for the standard one-dimensional Haldane-Shastry model, where the correlations also
decay as the inverse of the distance between the spins when | j− k| is large compared to 1
and small compared to N, as we shown in the discussion below Eq. (8.15). In the opposite
limit of large λ , we observe that the correlations decay exponentially. In this limit, the
model is hence qualitatively different from the standard one-dimensional Haldane-Shastry
model. This is expected, since we found in Sec. 8.3.4 that the state reduces to a product
of singlets in the large λ limit.

Given the qualitatively different behavior for small and large λ , the natural next
question is how the transition from one behavior to the other occurs. The figures show
that the transition happens gradually in the sense that for intermediate λ , the correlations
decay as a power law for short distances and exponentially for large distances. As λ

increases, the range of distances for which there is exponential decay increases. A look at
Eq. (8.42) suggests that the point

| j− k|
N

=
1

(πλ )
(8.44)

plays a special role, and from the figures we observe that the transition from power law
to exponential decay indeed occurs around this point. The power law decay at short
distances again follows the behavior

|〈Sz
jS

z
k〉| ∝ | j− k|−1, (8.45)

and at long distances the exponential decay is described by

|〈Sz
jS

z
k〉| ∝

1
N

exp
(

πλ | j− k|
N

)
. (8.46)

The curves in the figures are practically independent of the number of spins N, when
N is large enough, and this shows that the proportionality constants in Eqs. (8.45) and
(8.46) are independent of N. The independence of N is also interesting because it shows
that the possibility to have power law decay at short distances and exponential decay at
long distances remains in the thermodynamic limit.

It is relevant to note that in the above discussion, short and long distances refer to
| j−k|/N taking a value close enough to zero and close enough to unity, respectively. The
distances in question are hence measured relative to the length of the chain and do not
refer to how many spins there are between the two considered spins. When | j− k|/N is
kept fixed, the number of spins between the considered spins grows linearly with N, when
N increases. We could instead consider the correlations between spins that are | j− k|
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Figure 8.5.: Absolute value of the spin-spin correlation �SzjS
z
k� for the uniform one-dimensional

chain as a function of |k − j| for j = 100, which is the bulk spin, and k ∈
{0,1, . . . ,199}. We have plotted both halves of the spin chain. The red circles
are for k− j ≥ 0, and the blue squares are for k− j < 0. Note that the spin with
k = 100 is more strongly correlated with the spin with k = 101 than with the spin
with k = 99.

spins apart with | j− k| of order unity. Since the transition from power law to exponential
decay occurs around

| j− k|= N
(πλ )

, (8.47)

we are always on the left hand side of the transition, when N is large enough. In other
words, if we take the thermodynamic limit N → ∞ with fixed | j− k|, the correlations
decay as the inverse of the distance as in the one-dimensional Haldane-Shastry model,
independent of λ .

We have only plotted the correlations for k− j > 0 in Fig. 8.3 for clarity. The con-
clusions regarding power law and exponential decay are the same for k− j < 0. It is
interesting to note, however, that there is not a perfect symmetry between the left and
the right hand side of the chain, simply because the number of spins in the chain is even.
This means that on one side of the bulk spin there is an odd number of spins, and on the
other side of the bulk spin there is an even number of spins. We find that the bulk spin is
generally more strongly correlated with the first neighbor sitting on the side with an odd
number of spins than with the first neighbor sitting on the side with an even number of
spins. This effect is particularly strong for large λ , where the bulk spin forms a singlet
with the nearest neighbor sitting on the side, where there is an odd number of spins. The
effect is illustrated in Fig. 8.5 for both small and large λ . We note that this effect does
not occur in the standard HS model, since this model is defined on a circle, where there is
symmetry between the left and the right hand side.

We noted in Sec. 8.3.4 that the chain is perfectly dimerized into a product of singlets
in the limit λ → ∞. To investigate the behavior for large but finite λ , we plot numerical
results for the dimer order parameter in Fig. 8.6 for λ = 100 and N = 200. Since our
model is SU(2) invariant, we have

�SxjSxj+1�= �SyjS
y
j+1�= �SzjS

z
j+1�, (8.48)
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Figure 8.6.: Variation of �SzjS
z
j+1� as a function of j for the one-dimensional spin chain with

λ = 100 and N = 200. It is seen that for j even, spin number j is almost perfectly
anticorrelated with spin number j+1 and almost not correlated with spin number
j−1.

and it is sufficient to focus on �SzjS
z
j+1� only. The figure shows that �S

z
jS
z
j+1� oscillates as

a function of j. For j even, �SzjS
z
j+1� is close to −0.25, and for j odd, �S

z
jS
z
j+1� is almost

zero. This is the expected behavior for a chain that is close to a product of singlets.

Finally, we note that the Hamiltonian is nonlocal, and we cannot conclude from the
behavior of the correlation functions, whether there is an energy gap or not to the first
excited state in the thermodynamic limit.

8.4.2 Renyi Entropy of order two

The Renyi entropy is another general tool to extract important information about the
behavior of a spin system. As already noted in (8.18), the Renyi entropy grows logarithmi-
cally with subsystem size for critical systems. For noncritical systems, the entanglement
entropy of the ground state typically follows an area law, which means that the Renyi
entropy grows linearly with the boundary area of the selected region. In one-dimension,
the boundary area is independent of subsystem size, and the Renyi entropy is hence
constant.

In the computations below, we take part A of the system to be the first x spins in the
chain and part B to be the remaining spins. Since the chain is symmetric under inversion
of the direction of the spin chain, we have that the Renyi entropy of the first x spins is the
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A B

B ′A ′

Figure 8.7.: Relation between Renyi entropies for different cuts of a spin chain in a pure quantum
state. The upper part of the figure shows a spin chain partitioned into two regions A
and B, and the lower part of the figure shows the same spin chain partitioned into two
different regions A′ and B′. We choose the regions such that A and B′ contain x spins
each, while A′ and B contain N− x spins each. It is always the case that SA = SB and
SA′ = SB′ , but it is not necessarily the case that SA and SA′ are the same. When the
state of the chain has inversion symmetry, however, it is ensured that SA = SB′ , and
hence that SA = SA′ .

same as the Renyi entropy of the first N− x spins. This statement is explained pictorially
in Fig. 8.7. We therefore only compute the Renyi entropy for x≤ N/2. It is more time
consuming to compute the Renyi entropy than the correlations, since we use Monte-Carlo
simulations. We shall therefore restrict ourselves to N = 200 throughout. The results are
shown in Fig. 8.8.

For λ = 100, we observe that the Renyi entropy is close to zero whenever x is even and
close to 0.7 whenever x is odd. This is a consequence of the results in Sec. 8.3.4. When
x is even, we do not cut any of the singlets apart, and there are almost no correlations
between the two parts. When x is odd, we break one singlet into two when cutting the
chain, and the entropy is close to ln(2)≈ 0.693.

For λ = 0.25, the correlations follow a power law decay, and we hence expect that the
Renyi entropy is linear in ln(x) for 1� x� N, possibly plus some oscillations. From Eq.
(8.18), we get the leading order behavior

Sx ≈ c
ln(x)

8
+ constant. (8.49)
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Figure 8.8.: Renyi entanglement entropy Sx of order two for the uniform one-dimensional chain
versus ln(x), when the subsystem consists of the spins 0, 1, . . ., x− 1. There are
N = 200 spins in the chain, and in (a) λ = 0.25, in (b) λ = 1, in (c) λ = 5, and in
(d) λ = 100. The vertical lines in (b) and (c) are at x= N/(πλ ). In (a) this line is to
the right of the plotted region and in (d) it is to the left of the plotted region. In (a-c),
we show two linear fits to the upper and the lower set of points, respectively. In (a, b,
c), the slopes of the upper lines are (0.059, 0.047, 0.030) respectively, and the slopes
of the lower lines are (0.126, 0.122, 0.091) respectively.

For the one-dimensional Haldane-Shastry model, the central charge is c = 1, and it
is hence relevant to compare the entropy plot to a straight line with slope 1/8. Figure
8.8(a) shows that the entropy oscillates with period 2. If we look only at the points with x
even in the region 1� x� N, the points approximately fall on a straight line with slope
0.126. This fits with the expected value 1/8 within the uncertainty of choosing the fitting
region. If we look at the points with odd x, however, the slope of the line is around 0.059,
which does not fit with 1/8. It may be that this discrepancy is related to the asymmetry
observed in Fig. 8.5. For λ = 1, the slopes of the two fitted lines have changed to 0.122
and 0.047. It is interesting that the slope for x even is again close to 1/8, while the slope
for x odd seems to change with λ . For λ = 5, both slopes are reduced, but the results are
likely inaccurate, since the number of points in the region with linear increase is small.

For intermediate values of λ , we observe a transition from a linear increase with ln(x)
for small x to an area law behavior for large x. The figure shows that the transition occurs
approximately at

x=
N

πλ
. (8.50)
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This fits with the behavior of the correlations, where we saw a transition from power law
decay to exponential decay.

8.4.3 Strengths of the spin-spin interactions
To investigate the Hamiltonian that gives rise to the physics discussed above, we now
take a closer look at the spin-spin interaction strengths (8.21) for the choice

wi j =
(zi + z j)

(zi− z j)
. (8.51)

We first investigate some limiting cases analytically, and after that present numerical
results for different values of N and λ .

(a). Behavior for small and large λ with N fixed

We first consider the limit, where 2πλ � 1. In this case

wi j =
e2πiλ/N + e2π jλ/N

e2πiλ/N− e2π jλ/N
≈ N

π(i− j)λ
(8.52)

and hence

bi,i+d ≈
N2

6π2λ 2d2

(
1+ ∑

k(6=i 6=i+d)

d2

(k− i)(k− i−d)

)
. (8.53)

The sum can be simplified by utilizing

d
(k− i)(k− i−d)

=
1

k− i−d
− 1

k− i
. (8.54)

For d > 0 this leads to

bi,i+d ≈
N2

6π2λ 2d2

[
3−

d

∑
k=1

(
d

k+ i− i0
− d

k−N + i− i0

)]
, (8.55)

where i0 is the lowest possible value of i (i.e., i = i0 for the left most spin in the chain).
The result for d < 0 is obtained by taking d→−d and i− i0→ N− 1− (i− i0) in Eq.
(8.55). If we consider a spin in the bulk of the chain, the expression for bi,i+d simplifies
further to

bi,i+d ≈
N2

2π2λ 2d2 . (8.56)

In this limit, we hence observe that the interaction strength is inversely proportional to
the square of the distance between the spins as in the original one-dimensional Haldane-
Shastry model. In the one-dimensional Haldane-Shastry model, the spins are sitting on
a circle, but as long as |d| � N, the chord distance is approximately the same as |d|, as
already noted in Eq. (8.13). For small λ and large N, we hence expect that the uniform
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one-dimensional chain model behaves similarly to the one-dimensional Haldane-Shastry
model, except for possible edge effects. This is consistent with the observations made in
the last two sections.

The result derived above for 2πλ � 1 is also a good approximation for spins in the
bulk under the less strict condition 2πλ |i− j| � N. Although in this case there are some
values of k for which Eq. (8.52) does not provide a good approximation for wki and wk j,
those terms are much smaller than those for which Eq. (8.52) is a good approximation.
The error made by nevertheless using Eq. (8.52) for all k is hence small.

Next we consider the limit 2πλ � N. We have

bi j =
1
6
(e

2πλ i
N + e

2πλ j
N )2

(e
2πλ i

N − e
2πλ j

N )2
+

1
6 ∑

k( 6=i6= j)

(e
2πλk

N + e
2πλ i

N )

(e
2πλk

N − e
2πλ i

N )

(e
2πλk

N + e
2πλ j

N )

(e
2πλk

N − e
2πλ j

N )
. (8.57)

Now, for 2πλ � N, we have

e
2πλk

N + e
2πλ j

N

e
2πλk

N − e
2πλ j

N

≈ sign(k− j), (8.58)

and hence
bi j ≈

1
6
(N−2| j− i|+1). (8.59)

In this case, the interaction strength is decaying linearly, and the range of the interaction
is determined by the system size. We would hence expect a behavior of the system that is
different from the one-dimensional Haldane-Shastry model. This is consistent with the
observation that the ground state is a product of singlets in that limit.

(b). Numerical results

We plot results for |bN/2, j| for different values of λ and N in Fig. 8.9. The limit (8.56) is
shown as the red dotted line in the plots. This behavior is followed as long as | j−N/2|/N
is small enough, and this suggests that there is a connection between this behavior of the
interaction strengths and the power law decay of correlations in the ground state. The
limiting behavior (8.59) is approximately followed in panel (f).

An important conclusion from the plots is that the Hamiltonian is, generally, nonlocal.
We also see that |bN/2, j| does not follow a simple decay law over the entire range of
| j−N/2|/N values, but changes behavior qualitatively depending on the distance between
the spins. Motivated by the observations for the spin-spin correlations, one may speculate
if there is a change of behavior at

| j−N/2|
N

=
1

πλ
. (8.60)

We do, however, not observe sharp transitions at these points in the plots. This may
happen since the correlations between spin number N/2 and spin number j are not
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Figure 8.9.: We plot the absolute value of the spin-spin interaction strength bk j, from Eq. (8.21),
for the uniform one-dimensional chain as a function of | j−k|/N for k= N/2, which
is the bulk spin, and j ∈ {N/2+ 1,N/2+ 2, . . . ,N− 1}. For clarity we plot only
some of these j values. The different plots are for different values of λ , and there
are N = 200, as symbolized by red circles, N = 2500, as symbolized by blue circles,
N = 5000, as symbolized by magenta circles, N = 7500, as symbolized by green
circles, or N = 10000, as symbolized by black circles, spins in the chain. The red
dotted line in each plot is the limit (8.56), and the vertical lines in the plots (c-f) are
positioned at ( j−N/2)/N = 1/(πλ ).

determined by bN/2, j alone, but depend on all the b jk. The fact that |bN/2, j| changes
behavior depending on distance in this model suggests that such changes may be a
general mechanism to obtain models, where the correlations follow different decay laws
depending on the distance between the spins.

Finally, we note that there is a whole family of two-body Hamiltonians having the
analytical state as ground state. There are hence many different, possible behaviors of
b jk, and the results presented here show only one example.
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8.4.4 Spin chains with an odd number of spins

We have only considered spin chains with an even number of spins so far, since the
wavefunction (8.4) is zero unless the total number of spins is even. One may speculate,
however, if it is possible to decouple one of the spins from all the others by moving it
infinitely far away and in this way obtain a model for a spin chain with an odd number
of spins. We show here that this is possible for general λ , but the resulting model does
not have the natural property to be symmetric under inversion of the direction of the spin
chain.

We move the Nth spin infinitely far away from the others by taking zN → ∞ along the
positive real axis in the complex plane. With the definition

wi j =
(zi + z j)

(zi− z j)
, (8.61)

we have wiN →−1, and with the definition

wi j =
1

(zi− z j)
, (8.62)

we have wiN → 0. It follows from Eq. (8.21) that the spin interaction biN between the ith
and the Nth spin is zero for all i for the choice

wi j =
1

(zi− z j)
, (8.63)

but not for the choice

wi j =
(zi + z j)

(zi− z j)
. (8.64)

The Nth spin hence decouples from the others in the former case, but not in the latter.
It is, however, the latter choice that gives a Hamiltonian that is symmetric under inversion
of the direction of the chain.

For small λ , it is possible to have a chain with an odd number of spins and a Hamiltonian
that is symmetric. This follows from Eq. (8.21) and

wi j =
1

(zi− z j)
≈ N

2πλ (i− j)
. (8.65)

Another way to obtain chains with an odd number of spins for small λ is to consider a
ladder model with an odd number of spins on each leg as already demonstrated in Sec.
8.3.3.
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Figure 8.10.: Mapping of the spin positions from the complex plane, as shown in the upper plot,
to the cylinder surface, as shown in the lower plot, for the uniform ladder. The radii
of the consecutive circles in the plane are exp(2πλ j/N).

8.5 Uniform ladder model

In this section, we investigate the uniform ladder model obtained by choosing

z j± =±exp(2πλ j/N). (8.66)

Here, N is the total number of spins, which must be even, and j ∈ {0,1, . . . ,N/2− 1}.
Note that j+ and j− refers to spin number j on the front and back of the cylinder
respectively. The parameter λ/2 determines the ratio between the length of the ladder,
which is πλ , and the circumference of the cylinder, which is 2π . The mapping from the
complex plane to the cylinder is shown in Fig. 8.10. In the complex plane, the spins are
along both the positive and the negative part of the real axis, and on the cylinder they are
placed on opposite sides.

8.5.1 Strengths of the spin-spin interactions

From Secs. 8.3.3 and 8.3.4, we know that for λ very small, the ladder decouples into
two chains, and for λ very large, each spin on one of the legs forms a singlet with the
neighboring spin on the other leg. We hence expect that the legs of the ladder are weakly
coupled for small λ and strongly coupled for large λ .

To see what the coupling looks like, we plot the spin-spin interaction strength (8.21) for
different values of λ in Fig. 8.11. For λ = 1, we indeed observe that interactions between
spins on different legs are much weaker than the strongest interactions between spins on
the same leg. For λ = 100, the interactions with the neighboring spin on the opposite
leg are the strongest. For the intermediate case λ = 10, the interactions are strongest for
neighboring spins on the same leg, but there are also considerable interactions between
spins on different legs.
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Figure 8.11.: Spin-spin interaction (8.21) between spin number 49− and all other spins for a
uniform ladder with N = 200 spins. In this plot, we use a numbering such that 1
to 100 are the spins 0+ to 99+ on the front of the cylinder and 101 to 200 are the
spins 0− to 99− on the back of the cylinder.

Another important conclusion from the plot is that the spin-spin interactions between
spins on the same leg qualitatively display the same behavior as for the chain. We can
hence, at least for the middle spin, roughly think of the ladder as two copies of the chain
model plus interactions between the two legs. It is also interesting to note that for the
larger values of λ , the strength of the spin-spin interaction is approximately the same for
spins on the same leg as for spins on opposite legs, except when the distance between
the spins is small. Finally, the plots show that the interactions are highly nonlocal for λ
large.

8.5.2 Weak coupling

We first consider the case of small λ , where the interactions between the two legs of the
ladder are weak. We found in Sec. 8.3.3 that the ladder decouples into two independent
spin chain models in the limit of small λ . Here, we take the small, but finite, value
λ = 10−6 and plot the spin-spin correlations and the Renyi entropy in Figs. 8.12 and 8.13,
respectively. The plots show results both for the ladder and for two independent spin
chains, and we indeed see that these two cases give practically the same values.
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Figure 8.12.: Comparison of the spin-spin correlations for the ladder and the chain. The blue
squares show the absolute value of the spin-spin correlation �Sz0+S

z
k+� between spins

on the front of the cylinder for the uniform ladder with N = 200 and λ = 10−6 as a
function of k ∈ {1,2, . . . ,99}. The red circles show the same correlations for the
chain model obtained by removing all the spins on the back of the cylinder.

8.5.3 Spin-spin correlations

Results for the spin-spin correlations for a bulk spin and different values of λ and N are
provided in Fig. 8.14. We find that the sign of the correlations is generally positive or
negative if the two spins are separated by an even or odd number of nearest neighbor links
respectively. We hence plot only the absolute value of the correlations. For spins on the
same leg, it is seen that the correlations follow the same pattern as for the one-dimensional
chain. In the region well to the left of the line

(k−N/4)
N

=
1

πλ
, (8.67)

the correlations decay as
|�Szj+S

z
k+�| ∝ | j− k|−1, (8.68)

and in the region well to the right of the line

(k−N/4)
N

=
1

πλ
, (8.69)
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Figure 8.13.: Renyi entropy Sx of order two for the uniform ladder with N = 200 and λ = 10−6.
For x even or odd, part A of the system consists of the first x/2 or the first (x+1)/2
spins on the front leg and the first x/2 or the first (x−1)/2 spins on the back leg of
the ladder respectively. The green triangles and the black pluses show the sum of
the entropies for two independent spin chains, when the spin chains are cut at the
same positions as the legs of the ladder.

they decay as

|�Szj+S
z
k+�| ∝

1
N
exp

�
−πλ |k−N/4|

N

�
. (8.70)

For spins on different legs, we see that the correlations are almost independent of
distance in the region well to the left of the line

(k−N/4)
N

=
1

πλ
, (8.71)

and well to the right of the line they follow Eq. (8.70) with practically the same propor-
tionality constant as for spins on the same leg. The conclusion is hence that also for the
ladder model, we can have a situation, where the nature of the decay changes depending
on the distance between the spins.

8.5.4 Renyi Entropy of order two

Results for the Renyi entropy of order two are shown in Fig. 8.15 for N = 200 and
different values of λ . For λ = 200, the entropy is close to ln(2)≈ 0.693, whenever the
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Figure 8.14.: We plot absolute value of the spin-spin correlation �Szj+S
z
k±� for the uniform ladder

as a function of (k− j)/N for j = N/4, which is the bulk spin, and k ∈ {N/4+
1,N/4+ 2, . . . ,N/2− 1}. For clarity we plot only some of these k values. In
each plot, the upper and lower data points show the correlations of the bulk spin
with other spins on the same and opposite leg respectively. The different plots
are for different values of λ , and there are N = 200, as symbolized by red circles,
N = 2500, as symbolized by blue circles, N = 5000, as symbolized by magenta
circles, N = 7500, as symbolized by green circles, or N = 10000, as symbolized
by black circles, spins in the chain. The vertical lines in (b-c) are positioned at
(k−N/4)/N = 1/(πλ ). Note that the x-axis is in log scale to the left of these lines
and in linear scale to the right of these lines. For λ = 0.5, the correlations between
spins on the same leg are seen to follow a power law decay, while the correlations
between spins on opposite legs are much smaller and almost independent of distance.
For larger values of λ , we still see a power law decay for short distances, but at
longer distances the correlations decay exponentially, both for correlations between
spins on the same leg and for correlations between spins on opposite legs. The
transition from power law to exponential decay is seen to occur approximately
at the vertical lines. In the standard one-dimensional Haldane-Shastry model the
correlations decay as the inverse of the distance, and in (a-c) we plot a straight
line of slope −1 for comparison in the region where the x-axis is in log scale. The
straight lines in the region to the right of the vertical line in the plots (b-c) are
proportional to exp(−πλ (k−N/4)/N).

partition cuts a singlet apart, and it is close to zero, whenever none of the singlets are
cut apart. For λ = 1, we see that the entropy grows linearly with ln(x) in the region
1� x� N, except for oscillations. Considering only the points for which x is a multiple
of four, which corresponds to both legs being cut after an even number of spins, the
fitted slope is 0.23. In the limit of λ going to zero, the two legs of the ladder decouple
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Figure 8.15.: Renyi entropy Sx of order two for the uniform ladder with N = 200 and (a) λ = 1,
(b) λ = 10, and (c) λ = 200. For x even or odd, part A of the system consists of
the first x/2 or the first (x+ 1)/2 spins on the front and the first x/2 or the first
(x−1)/2 spins on the back of the cylinder respectively. In (a), we also plot, with
green triangles and black pluses, the sum of the entropies for two independent spin
chains with the same λ and cut at the same positions as the legs of the ladder. The
discrepancies show that the interchain interactions in the ladder model are important
for λ = 1. The straight line fits in (a) and (b) have slope 0.23 and 0.27, respectively.
The vertical lines in (a) and (b) are at x= N/(πλ ).

into two independent spin chains, and the entanglement entropy for the ladder is twice
the entanglement entropy for a single chain. The relevant slope to compare to is hence
c/4= 0.25 rather than c/8. It is also seen that the vertical line

x=
N

πλ
(8.72)

is approximately at the transition between linear growth with ln(x) for small x and area
law behavior for large x, after averaging out the oscillations. This is consistent with the
results for the correlations in the previous section.

8.6 Conclusions
We have constructed and studied a family of two-body spin models on a cylinder that
are related to the one-dimensional Haldane-Shastry model. The usual one-dimensional
Haldane-Shastry model corresponds to placing the spins uniformly on a circle around the
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cylinder. Here, we have instead placed the spins along one or two lines on the cylinder that
are parallel to the cylinder axis. This gives rise to chain and ladder models, respectively.
The construction allows us to scale the distance between the spins and hence the length
of the chain or ladder independently from the circumference of the cylinder, and we have
studied the significance of this extra parameter λ on the physics.

When the length of the chain or ladder is small compared to the circumference of
the cylinder for small λ , the properties of the ground state are described by the SU(2)1
Wess-Zumino-Witten universality class. The spin-spin correlations decay as a power law
with exponent −1, and for subsystems consisting of an even number of spins in each of
the legs or in the chain, the Renyi entropy of order two grows as the logarithm of the
subsystem size with a proportionality constant consistent with a central charge of c = 1.
There are also some edge effects. A spin in the chain is more strongly correlated with
the neighboring spin on the side, where there is an odd number of spins, than with the
neighboring spin on the side, where there is an even number of spins. In addition, when
the number of spins in the subregion is odd, the proportionality constant in the Renyi
entropy is lower than predicted by a critical theory with central charge c = 1, and the
slope varies with λ . In the small λ limit, the ladder model reduces to a product of two
chain models, and the spin-spin interaction strengths for spins in the bulk are inversely
proportional to the square of the distance between the spins as in the one-dimensional
Haldane-Shastry model. The conclusion is hence that for small λ , the physics of the
investigated model is the same as for the one-dimensional Haldane-Shastry model, except
for edge effects.

When keeping the number of spins N fixed and taking the limit, where the length of
the chain or ladder is large compared to the circumference of the cylinder, for large λ ,
the wavefunction of the ground state reduces to a product of singlets, and the singlets are
formed between neighboring spins. In this limit, the correlations decay exponentially, and
the Renyi entropy follows an area law. The model hence enables us to transform between
one or two copies of a one-dimensional Haldane-Shastry like model and a product of
singlets with a Hamiltonian that contains only two-body interactions. All the way along
this path the ground state is known analytically and various properties can be computed
for large system sizes using Monte-Carlo simulations or analytical tools.

When changing λ from small to large, we do not observe a sharp transition between
the two behaviors described above. Instead the transition occurs gradually, in the sense
that the chain shows different behaviors depending on the distances considered. For small
distances and small subsystem sizes, the system behaves as in the critical phase. For large
distances and large subsystem sizes, the correlations decay exponentially, and the entropy
follows an area law. As λ changes, the border between small and large distances moves.
The ladder model shows a similar behavior.

The results presented in this chapter are interesting, because they show that it is
possible to have a system, where the correlations and the entropy behave in different
ways depending on the distances considered. Although the precise pattern of interaction
strengths present in the considered models is difficult to realize in experiments, the
study suggests that having interaction strengths in the Hamiltonian that change behavior
depending on the distance may be a mechanism to obtain a model, where the correlations
and the entropy change behavior depending on distance.
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The investigated models contain several parameters, since the spin positions can be
chosen freely on two lines, and for each choice there is a family of two-body Hamiltonians
having the same ground state. Several further investigations could hence be done within
the same framework. Apart from being a nontrivial generalization of the one-dimensional
Haldane-Shastry model with only two-body interactions, the models presented in this
work provide an interesting playground for testing numerical approximation schemes.
The models display a variety of physical properties, and they have the unusual feature of
combining possibly long-range two-body interactions with an analytically known ground
state for which various properties can easily be computed.
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Conclusions
9

„Nothing is better than reading and gaining more
and more knowledge.

— Stephen Hawking

Topologically ordered phases can not be described by the local order parameters, rather
these phases are characterized by the global quantities such as the topology of the system.
A remarkable property of such short-range ordered and long-range entangled phases is the
existence of anyonic quasiparticle excitations which carry fractional charges and exhibit
fractional braiding statistics. In this thesis we have studied the anyonic quasiparticles
in the topologically ordered lattice systems. The main theme is to construct or modify
the lattice models to create the anyons in the ground state and to investigate the anyon
properties. A glimpses of the main conclusions of different chapters presented in this
thesis are highlighted as follows.

In Chapter-3 we have explicitly constructed the lattice fractional quantum Hall models.
Our constructions are based on the fact that the infinite-dimensional matrix product states
can be expressed as the correlator of conformal fields of the underlying conformal field
theory. We have inserted anyons in our lattice models and have shown that the singularity
problem for the quasielectrons, as appear in the continuum, can be avoided in the lattice
systems. Therefore we have found simpler states for the quasielectrons in the lattices than
in the continuum. We have constructed the lattice Laughlin and the lattice Moore-Read
fractional quantum Hall models both in the presence and in the absence of anyons on
a two-dimensional plane. We have introduced a parameter in the system to interpolate
between the lattice limit and the continuum limit. We have shown that our lattice states
resemble the states in the continuum if we take the continuum limit.

We have researched the non-Abelian anyons in the lattice Moore-Read models in
Chapter-4. We have investigated the cases of the two quasiholes, two quasielectrons, one
quasihole-one quasielectron, four quasiholes, four quasielectrons, and two quasiholes-two
quasielectrons in the systems at the Landau level filling factor 5/2. We have found that the
anyons are well-screened with the radii of a few lattice constants and the quasielectrons
have very similar density profiles to those of the quasiholes apart from a sign. The
charges of the quasiholes and of the quasielectrons approach ' +0.25 and ' −0.25
respectively. This agrees with the findings for the quasihole charge in the continuum.
We have probed the topological properties of the systems by computing the fractional
braiding statistics of the anyons. We have found that the anyons are non-Abelian and
the braiding statistics are the same as expected from the continuum. We have used the
Monte-Carlo simulations to compute the aforementioned properties. Therefore we have
confirmed that the quasielectrons can be created and can be investigated in a similar way
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to those of the quasiholes. We have used the conformal field theory approach to construct
the parent Hamiltonians for which our analytical states are the exact ground states. By
numerically diagonalizing the Hamiltonians we have found degenerate ground states for
the case of the four anyons in the system which also signify the non-Abelian nature of the
anyons. These Hamiltonians are long-range and contain few-body interactions and allow
for the manipulation of the anyons by tuning the coupling strengths of the interactions.
Since the bulk correlations, in the topologically ordered phases, decay exponentially
therefore these Hamiltonians would be a starting point to obtain the local Hamiltonians,
having the same ground state physics, by using the truncation procedure. Experimental
realizations of such local Hamiltonians provide the stage to study the topological systems
and to use them in topological quantum computations.

By using potentials we have trapped the non-Abelian quasielectrons in a similar way
to that of the non-Abelian quasiholes in the ground state of the Kapit-Mueller model
Hamiltonian for hardcore bosons which is known to exhibit the bosonic Moore-Read
fractional quantum Hall physics. By using exact diagonalizations we have found that
the anyons in this model are screened well and possess right charges. The excess charge
distribution and the shapes of the anyons are shown to be similar to the corresponding
quantities computed in our analytical lattice Moore-Read states. Therefore our analytical
states are relevant to this simpler and experiment friendly model.

Anyons and the fractional quantum Hall physics have been explored in the two-
dimensional systems. And often they are researched in the crystal structures, that is
in the structures which have the translational symmetry. In Chapter-5 we have taken the
step to realize these phenomena in the quasicrystalline structures and in the fractional
dimensional systems, such as in the fractal lattices. We have constructed new type of
fractional quantum Hall models containing anyons on the quasicrystals and on the fractal
lattices. We have shown that the well-screened anyons exist in the quasicrystals and in
the fractal dimension of ' 1.585 on the Sierpinski gasket fractal lattice geometry. We
have also shown the well-screened anyons to exist in the fractal dimensions between 1
and 2. It is known that the one-dimensional system is critical and therefore the anyons
can not exist there. However we have shown that the anyons can exist in one dimension
on the particular fractal space geometry. And interestingly our results have revealed
that the anyons can be present in the dimension less than one such as in the dimension
ln(4)/ ln(5)' 0.86. Therefore we have shown that the anyons and the fractional quantum
Hall physics can be obtained in all dimensions 1≤ dimension≤ 2. We have concluded
that the lattice points distributions are more important in hosting anyons and in realizing
the fractional quantum Hall physics rather than the Hausdorff dimensions of the fractal
spaces. We have explicitly shown that the anyons obey the right braiding statistics and
we have derived the parent Hamiltonians for which our analytical anyonic lattice states
are the exact ground states.

We emphasis on the important common point, for the investigations of the anyons and
of the topological order in the quasicrystals and in the fractal lattices, that we can use
our construction to obtain the anyons and the fractional quantum Hall physics on lattices
where one can not easily construct a topological flat band, for example a fractional Chern
insulator model, due to the lack of the translational symmetry.
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It is known that the topologically ordered systems of fermions or bosons host the
anyonic quasiparticles. In Chapter-6 we have shown that the systems of hardcore anyons
can give rise to their own anyonic quasiparticles. We have constructed the lattice Laughlin
fractional quantum Hall models of the hardcore anyons and have shown that the anyonic
quasiparticles of these systems are well-screened and possess right charges. We have
demonstrated that the braiding statistics of the emergent anyonic quasiparticles are
different than that of the original hardcore anyons in the systems.

It is well appreciated that the topologically ordered systems can host anyonic quasi-
particles with particular braiding properties and with fractional charges. Whenever the
quasiparticles are anyonic, we know that the system is topologically ordered. There-
fore when a system enters into a non-topological phase or into a phase with different
topological order, then the anyon properties change across the transition. We have used
these ideas in Chapter-7 and we have benchmark the quasiparticles as the detector of the
topological quantum phase transitions. We have examined our method on five examples
as follows. We have considered a lattice Moore-Read fractional quantum Hall state on
a square lattice and on a fractal lattice, which encounters a topological quantum phase
transition while changing the lattice filling factor. We have shown that the anyon charges
detect the topological quantum phase transition. We have investigated an interacting
Hofstadter fractional Chern insulator model in the absence of disorder with open boundary
condition, which has a Laughlin type fractional quantum Hall ground state, and which
undergoes a topological quantum phase transition as a function of the lattice filling factor.
We have also considered the same model in the presence of disorder. We have modified
the Hamiltonian to trap the anyons in the ground state and have found that the anyon
charges detect the topological quantum phase transition. We have studied the Kitaev’s
toric code model on the torus, which undergoes a topological quantum phase transition
when a sufficiently strong magnetic field is applied. We have modified the Hamiltonian
and have created the anyons in the ground state and have shown that the anyons detect
the topological quantum phase transition.

We have found that for all these quite different examples, it is sufficient to compute the
anyon charges to determine the phase transition points. Therefore the method is numeri-
cally cheaper than the computations of other probes such as the topological entanglement
entropy, the many-body Chern number, the spectral flow, and the entanglement spectrum.
We have also concluded that our probe works for all types of topological orders and the
method is independent of the choice of the boundary conditions.

In Chapter-8 we have considered a family of spin-1/2 models with few-body, SU(2) in-
variant Hamiltonians and analytical ground states related to the one-dimensional Haldane-
Shastry wavefunction. The spins are placed on the surface of a cylinder and we have
shown that interesting family of models with two-body exchange interactions is obtained
if we place the spins along one or two lines parallel to the cylinder axis, giving rise to
chain and ladder models, respectively. We can change the scale along the cylinder axis
without changing the radius of the cylinder, which gives us a parameter that controls
the ratio between the circumference of the cylinder and all other length scales in the
system. We have used Monte-Carlo simulations and analytical investigations to study
how this ratio affects the properties of the models. If the ratio is large, we have found
that the two legs of the ladder decouple into two chains that are in a critical phase with
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Haldane-Shastry-like properties. If the ratio is small, we have found that the wavefunction
reduces to a product of singlets. In between, we have found that the behavior of the corre-
lations and the Renyi entropy depends on the distance considered. For small distances
we have found that the behavior is critical, and for long distances the correlations decay
exponentially and the entropy shows an area law behavior. And the distance up to which
there is critical behavior gets larger and larger as the ratio increases.

148 Chapter 9 Conclusions



Future Directions
10

„Tea is where we explain to each other what we do
not understand.

— Robert Oppenheimer

We have studied quasiparticles in the strongly correlated quantum many-body systems
with an emphasis on the topologically ordered phases of matter. Our investigations open
up the avenue for further research directions as we outline below.

We have benchmarked the quasiparticles as the detector of the topological quantum
phase transitions. It would be interesting to apply our quasiparticle probe in investigating
the frustrated quantum magnets, which give birth to the rich phase diagrams and become
the potential candidates to realize the quantum spin liquids, such as the spin-1/2 J1-J2 XY
models and the spin-1/2 J1-J2 Heisenberg models on different lattices like on the Kagome
lattice, on the triangular lattice, on the square lattice, and on the honeycomb lattice. Also
it would be worth to use our quasiparticle probe in investigating the quantum phases of
the three-dimensional rare-earth pyrochlore magnets. It would be interesting to apply our
probe in studying quantum phase transitions between different non-topological phases
including gapless phases.

Recently a neural network based machine learning technique, which is known as the
"quantum loop topography", has been introduced to study the topologically ordered
phases of matter and to draw the phase diagram therein. It would be interesting to merge
this technique with our quasiparticle probe approach in determining the phase diagram of
various systems.

The Kitaev’s honeycomb model under the external magnetic field, in any direction,
draws much attentions due to the rich phase diagram and the possibility of having both
the gapped topological and the gapless quantum spin liquid phases and the polarized
phase in its phase diagram. It would be interesting to apply our quasiparticle probe in
detecting the different quantum phases there and thereby in drawing the phase diagram.
Also topological nature of the quantum spin liquid phase can be concluded from the
cornerstone of its quasiparticle properties. While turning on the magnetic field, the
Kitaev’s honeycomb model is no longer exactly solvable and the anyons can not be
created in the way as that of the model without the magnetic field. Therefore our approach
in trapping quasiparticles in the ground state in the presence of the magnetic field, by
giving energy penalties, would be quite eye-catching for different purposes.

Local lattice fractional quantum Hall models are of immense interest from their own
right since the local models are experiment friendly and thereby the control over anyons
becomes easier. We have constructed the anyonic lattice Moore-Read Hamiltonians which
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are long-range. It would be important to construct local models, having practically the
same ground state physics as the original one, by truncating the long-range Hamiltonians
since the bulk correlations decay exponentially. A recent work in Ref. [69] has already
shed some light in this direction where the local models for a particular lattice Moore-
Read state family, in the absence of the anyons in the system, have been constructed. And
therefore that approach suggests the same to be true for the models hosting the anyons.

Braiding statistics for the quasiholes have been explicitly computed in the Kapit-
Mueller model in Ref. [119] which is a simpler and a realistic model. We have shown
how to create the quasielectrons in that model and therefore it would be interesting to
explicitly calculate the fractional braiding statistics of the quasielectrons there. This is
important for the topological quantum computations as well.

The Fibonacci anyons are one of the potential candidates for the topological quantum
computations and for constructing universal quantum gates. These anyons appear in the
Read-Rezayi fractional quantum Hall states at the Landau level filling factor 12/5. We
have created and have investigated the Ising anyons in the lattice Moore-Read fractional
quantum Hall models. Therefore it would be important to construct the lattice versions of
the Read-Rezayi models containing the Fibonacci anyons and thereby to investigate their
properties.

Quasicrystals provide a wealth of the intriguing phenomena in topological orders,
such as the legacy of topological properties from higher dimensions, due to the long-
range order and the non-periodic structure of the atoms. The fractal lattices provide
the stage to understand the intriguing physics of the topological orders in fractional
dimensions 1 ≤ dimension ≤ 2. We have shown that the anyons and the fractional
quantum Hall physics exist on the quasicrystals and on the fractals by constructing the
lattice Laughlin models containing anyons and by investigating the anyon properties.
It would be interesting to construct the lattice models carrying non-Abelian anyons on
the quasicrystals and on the fractal lattices. Besides our constructions provide some
hints to build up the fractional Chern insulator type model Hamiltonians in future on the
quasicrystals and on the fractal lattices, having the interactions and the complex hoppings
resembling the magnetic field. Also the investigations of the entanglement properties
and the transport properties would be important directions to explore. Recently twisted
bilayer graphene systems, which are also quasicrystals, are attracting a lot of recognitions.
It would be important to proceed with our investigations on such systems.

We have proposed that the systems of hardcore anyons can give rise to their own
anyonic quasiparticles. We have shown this to happen in the lattice Laughlin fractional
quantum Hall systems. It would be interesting to motivate these ideas further to realize
the non-Abelian anyonic quasiparticles from the systems of the hardcore anyons, that is
to construct the lattice Moore-Read models of hardcore anyons and to investigate their
anyonic quasiparticle properties.

Study of the non-equilibrium dynamics, such as the quench dynamics are important
in their own right. Investigations of the stability of different phases including the topo-
logically ordered phases by following a quench are the active areas of research. We
have created and have researched the anyonic quasiparticles in various topologically
ordered systems. Therefore it would be interesting to investigate the fate of the anyons by
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following different types of quench protocols. These studies would reveal the long-time
non-equilibrium behavior of the anyons. It would be important to determine the stability
of the topologically ordered phases, by following a quench, by using their quasiparti-
cle properties such as the quasiparticle charges. Also these ideas could be extended in
studying the non-equilibrium dynamics of different other types of systems, such as the
frustrated quantum magnets, by looking at their quasiparticle properties.

A recent work in Ref. [267] shows the emergence of the fractional quantum Hall
physics in a non-Hermitian fractional Chern insulator model, which they claim to be a
relevant model with the ultra-cold atoms in optical lattice experiments. They draw the
conclusions by computing the ground state degeneracy and the many-body Chern number
on the torus. It would be an interesting direction to create the anyons and to investigate
the anyon properties such as the charge and the braiding statistics on this model. These
investigations would motivate the study of anyons in open quantum systems, which
interact with the environment and thereby are essentially non-Hermitian, in accordance
with the experiments.

The investigated chain and ladder models contain several parameters, since the spin
positions can be chosen freely on two lines, and for each choice there is a family of two-
body Hamiltonians having the same ground state. Therefore several further investigations
could be done within the same framework, which may give rise to interesting spin
models.
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Numerical Techniques
A

„Monte Carlo originated as a form of emergency
first aid, in answer to the question: What do we
do until the mathematician arrives?

— George Dyson

Exact solutions of the quantum many-body systems are very rare beyond one dimension,
where there exist several important cases. In two dimensions there are also some examples
but usually the analytical calculations rely on the assumptions or on the approximations
those can not be justified rigorously. Therefore the numerical studies of model systems
are essential. Besides providing the insight to the physics of the systems, the unbiased
numerical results are important for testing the theories and the analytical calculations.
Moreover, the numerical simulations set the playground for the explorations and for the
discoveries in both the theoretical and the experimental directions.

Two classes of the computational methods are used in this thesis as the numerical
exact diagonalization and the Metropolis Monte-Carlo simulation which are discussed
as follows. In Sec. A.1 we discuss the exact diagonalization [199] and in Sec. A.2 we
narrate the Metropolis-Hastings Monte-Carlo algorithm [253, 90].

A.1 Exact diagonalization

By exactly diagonalizing the Hamiltonian, a complete understanding of a system can be
obtained. Any static or dynamic quantity can be computed with the available eigenstates
and the energies. Given a Hamiltonian in hand, the first step of an exact diagonalization
is to choose a basis in which the Hamiltonian and the other operators will be expressed.
The choice of the basis is not unique. Different choices of the basis will lead to the
different matrix forms of the Hamiltonian and the other operators, which are related
by the unitary transformations, but the physical quantities like the energies, correlation
functions, entanglement properties, magnetizations etc. remain the same.

We consider a system of N lattice sites. Any quantum many-body state |Ψ〉 with the
local Hilbert space dimension p can be defined in terms of the pN coefficients as

|Ψ〉= 1
C ∑

n1,...,nN

Ψ(n1, ...,nN)|n1, ...,nN〉, (A.1)
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Figure A.1.: We show the pictorial illustration of the block diagonalization. In the original basis,
the system Hamiltonian has no structure as we show in the left figure with the pink
shaded area. By constructing the basis states as labeled by a conserved quantum
number, the Hamiltonian matrix breaks up into the blocks, as we show in the middle
figure with the red shaded area, those can be diagonalized independent of each other.
By applying another symmetry, that is by using another conserved quantity of the
system, the previously constructed blocks can be further reduced into smaller blocks,
as we show in the right figure with the violet shaded area, as labeled by the different
quantum numbers. We note that all the matrix elements which are outside the shaded
blocks are zero.

where
|n1, ...,nN〉= |n1〉⊗ · · ·⊗ |nN〉 (A.2)

is the basis state and n j ∈ {0,1, . . . , p− 1} denotes the occupancy, or the degrees of
freedom, of the jth lattice site. Therefore the system Hamiltonian or any operator, written
in this many-body Hilbert space, consists of the pN × pN coefficients. For example
a system of N lattice sites having the local Hilbert space spanned by the basis states
|ni〉 ∈ {0,1}, for example the spin-1/2 system, has p = 2 and correspondingly the total
Hilbert space dimension is 2N .

In a straight forward manner this system can be treated numerically by constructing
the Hamiltonian and the other operators of dimension pN× pN and by constructing the
state |Ψ〉 with the pN number of Ψ(n1, ...,nN) coefficients and thereby computing their
properties. The word "exact" justifies its presence, in the name of this technique, as the
Hamiltonian is represented fully without any dimension truncation. After the construction
of the Hamiltonian, the energy spectra and the eigenstates are computed by using the
standard diagonalization algorithms like the Lanczos diagonalization algorithm.

However because of the exponential growth of the Hilbert space dimension as pN

with the number of the particles in the system, this procedure is limited to the small
system sizes. Therefore symmetries, that is the system properties which commute with
the Hamiltonian, should be used whenever applicable to first reduce the Hamiltonian to
a block-diagonal form. We illustrate such a scheme in Figure A.1. In this process the
basis states are ordered properly or combined with the help of the available symmetries.
Hence the Hamiltonian is decomposed into the different sectors. The different sectors
or the blocks correspond to the states with the different conserved quantum numbers,
which are related to the symmetries. Examples of such symmetries and the conservation
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include the particle number conservation, or the magnetization conservation in case of the
spin systems, or the crystal momentum conservation by following the lattice translational
symmetry etc. The obtained blocks can be diagonalized independently and hence one can
work with the Hilbert spaces of much smaller dimensions than that of the total Hilbert
space of the full system. Therefore one can target a larger system size at a much reduced
computational cost. For example with a system of N lattice sites having |ni〉 ∈ {0,1} and
conserving the particle number to M, gives rise to the sizes of the blocks as

N!
M!(N−M)!

<< 2N , where M ∈ {1, . . . ,N}. (A.3)

Despite the exponential dependence on N, the exact diagonalization tool is very useful
in studying the quantum many-body systems. And the access to the different quantum
numbers is indispensable for classifying the excitations. Furthermore being the method
to obtain the exact results, the exact diagonalization is used to test the other variational
methods and the other approximation techniques. In this thesis we have used this tool on
the quantum many-body Hamiltonians to compute the properties of the systems.

A.1.1 Creation of the blocks with fixed number of particles

Our first task is to find the Hilbert space of each block, which conserves the particle
number, of the Hamiltonian and to find an appropriate way to label the states. We will
first reduce the Hilbert space to only contain states with M particles, that is, to states for
which ∑ j n j = M. We would like to set up a map, called a lin table, which takes a basis
state with ∑ j n j = M as input and produces the number of this state in the reduced basis
as output. Numerically we do this in the following way.

First we divide the lattice into two parts, the left part consisting of the sites 1,2, . . . ,K1,
and the right part consisting of the sites K1 +1,K1 +2, . . . ,N. We note that K1 +K2 = N.
We then consider all possible configurations of the left part and all possible configurations
of the right part. The left part has 2K1 different configurations, and the right part has 2K2

different configurations. The 2K1×1 vector, named as spsum1 is the number of particles
for each possible configuration of the left part, and the 2K2×1 vector, named as spsum2,
is the number of particles for each possible configuration of the right part. Instead of
running through all 2N configurations of the N spins, which is too time consuming, we
make a for loop, which loops over possible numbers of particles in the left part of the
chain. We then know that we need to match these left hand configurations with right hand
configurations such that the total number of particles is M.

The vector, named as aux1, contains all left hand configurations with exactly mm
particles, and the vector, named as aux2, contains all the right hand configurations with
M−mm particles. By combining these left hand and right hand configurations, we get
l1× l2 valid basis states, where l1 is the length of aux1 and l2 is the length of aux2. For the
lowest possible value of mm, we label the states from 1 to l1× l2. We do this by storing
two lists of numbers as lin1 and lin2. For the states in aux1 we store numbers that jump
by l2 and for the states in aux2 we store numbers from 1 to l2. Hence, when we add up
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the numbers in lin1 and lin2, we get numbers running from 1 to l1× l2. For higher values
of mm, we do the same, except that we add the number of states we already had in lin1.

When we have constructed lin1 and lin2, we can get the number NM of a given state in
the reduced basis in the following way

NM = lin1

(
K1

∑
j=1

n j×2K1− j +1

)
+ lin2

(
N

∑
j=K1+1

n j×2N− j +1

)
. (A.4)

(a). Example

Let us take N = 5 and M = 2 as an example. In this case, K1 = 2 andK2 = 3. The possible
left part configurations are 00,01,10, and 11, and the possible right hand configurations
are 000,001,010,011,100,101,110, and 111. We first find that 00 can be combined with
011,101, and 110. Therefore lin1(1) is set to zero, lin2(4) to 1, lin2(6) to 2 and lin2(7)
to 3. Then we find that 01 and 10 can be combined with 001,010, and 100. Since we
already found 3 states in the previous step, we put lin1(2) equal to 3. We then set lin2(2)
to 1, lin2(3) to 2, and lin2(5) to 3. Then lin1(3) should be 6. We now have 9 states in the
basis. Finally, we find that 11 can be combined with 000. We hence put lin1(4) equal to
9 and lin2(1) equal to 1.

The resulting lin tables are: lin1 = [0;3;6;9] and lin2 = [1;1;2;1;3;2;3;0]. With
the lin tables in place we can take a given configuration and find the corresponding
state in the new basis. If, for instance, we consider the configuration |10100〉, we have
N2 = lin1(3)+ lin2(5) = 9. Hence this state is number 9 in the reduced basis. Altogether
the reduced basis consists of the states as follows

basis state lin1 lin2 NM
|00011〉 0 1 1
|00101〉 0 2 2
|00110〉 0 3 3
|01001〉 3 1 4
|01010〉 3 2 5
|01100〉 3 3 6
|10001〉 6 1 7
|10010〉 6 2 8
|10100〉 6 3 9
|11000〉 9 1 10

Now we apply the Hamiltonian to these reduced basis states to construct the block with
the desired particle numbers. Then the diagonalizations of the blocks of the Hamiltonian
can be done by using the standard algorithms like the Lanczos algorithm.
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A.2 The Metropolis-Hastings Monte-Carlo
technique
As we have discussed, the exact diagonalization technique is limited to small system sizes
due to the exponential explosion of the Hilbert space dimensions. Therefore we have
used the Metropolis-Hastings Monte-Carlo simulations to acquire larger system sizes. In
this thesis we have used this algorithm to obtain the properties of the analytical states.

The Metropolis-Hastings algorithm is a Markov chain Monte-Carlo method to obtain a
sequence of the random samples from a probability distribution. This algorithm generates
a sequence of sample values such that more the sample values are produced, better is the
approximation of the distribution of values to the desired distribution P(x). These sample
values are produced iteratively and the current sample value determines the distribution
of the next sample. Hence the sequence of the samples becomes the Markov chain. To
be specific, at each step of the iterations the algorithm chooses a candidate for the next
sample value depending on the current sample value only. Then the candidate is either
accepted or rejected for the next iteration step based on some probability.

A.2.1 Algorithm

A Markov process is defined by the transition probability P(x′|x) which gives the proba-
bility of the transition from a given state x to another state x′. The Metropolis-Hastings
algorithm starts with the condition of the detailed balance which requires that each tran-
sition x→ x′ is reversible, that is for each pair of the states x and x′, the probability of
being in the state x and the probability of transitioning to the state x′ must be equal to the
probability of being in the state x′ and the probability of transitioning to the state x. This
means we have

P(x′|x)P(x) = P(x|x′)P(x′). (A.5)

Now the transition is separated in the two steps as by proposing a distribution and
by following a acceptance-rejection procedure. The proposal distribution Q(x′|x) is an
arbitrary probability density which propose a candidate state x′ given another state x. For
the Metropolis algorithm, Q must be symmetric that is

Q(x′|x) = Q(x|x′). (A.6)

A suitable choice will be the Gaussian distribution centered at x. The acceptance ratio
A(x′|x) is the probability to accept the state x′. The transition probability is written as

P(x′|x) = Q(x′|x)A(x′|x). (A.7)

Therefore from Eq. A.5 we write

A(x′|x)
A(x|x′)

=
P(x′)
P(x)

Q(x|x′)
Q(x′|x)

. (A.8)
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Now the Metropolis choice of the acceptance ratio, which satisfies the above condition
in Eq. (A.8), becomes

A(x′|x) = min
(

1,
P(x′)
P(x)

Q(x|x′)
Q(x′|x)

)
. (A.9)

Therefore the Metropolis-Hastings algorithm is sketched as follows:

(1) Initialize :

(i) Pick up any initial state x0.

(ii) Initiate the iteration t = 0.

(2) Iterate :

(i) Randomly generate the candidate state x′ according to Q(x′|x).

(ii) Compute the acceptance probability A(x′|x) = min
(

1, P(x′)
P(x)

Q(x|x′)
Q(x′|x)

)
.

(iii) Accept or reject :

(a) generate a random number r ∈ {0,1}.

(b) if A(x′|x)≥ r, accept the new state and set xt+1 = x′.

(c) if A(x′|x)< r, reject the new state and proceed with the old state xt+1 = xt .

(iv) Increment : Set the iteration step as t = t +1.

The algorithm is run for a certain number of iterations first, without measuring the
observable value, such that Q≈ P. This is called the warm up steps. Normally the warm
up steps time scales with the system size as ∝ (system size)2. Then the algorithm is run
to collect the data.

A.2.2 Error estimation
To estimate the accuracy of the obtained data, we accumulate the data values from the
Nt statistically independent trajectories as P(k), where k ∈ {1, ...,Nt}, by running the
simulation Nt times. Then we calculate the mean and the error bar of the data by reaching
the Gaussian distribution of the values and thereby exploiting the central limit theorem.
The true value is then expected to lie within the error bar around the mean value and
hence we write

Ptrue = Pmean±∆P, (A.10)

where

Pmean =
1
Nt

Nt

∑
k=1
P(k) and ∆P =

√√√√ 1
Nt(Nt−1)

Nt

∑
k=1

(
Pmean−P(k)

)2
. (A.11)
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We point out that by considering more trajectories, we approximate the Gaussian
distribution curve more accurately. That is more the trajectories, more the data points on
the Gaussian distribution curve. We also point out that more the number of the Monte-
Carlo steps while collecting the data, narrower is the Gaussian distribution curve width
which means lesser is the standard deviation and thereby smaller is the errorbar. Normally
the error ∆P scales with the Monte-Carlo steps as ∆P ∝ 1/

√
Monte-Carlo steps.

A.2.3 Example

We present here an example of determining the overlap of the two analytical states. We
have used this example in the computations in Chapter-4. We write the overlap of

|Ψα〉=
1

Cα
∑

i
Ψα |ni〉 and |Ψβ 〉=

1
Cβ

∑
i

Ψβ |ni〉 (A.12)

as

O = 〈Ψα |Ψβ 〉=
∑ni Ψ∗αΨβ√

∑ni |Ψα |2 ∑ni |Ψβ |2
, (A.13)

where we have
C2

α = ∑
ni

|Ψα |2 and C2
β
= ∑

ni

|Ψβ |2. (A.14)

We write Eq. A.13 as

∑ni Ψ∗αΨβ√
∑ni |Ψα |2 ∑ni |Ψβ |2

=
Λαβ√

Ωαβ Ωβα

, (A.15)

where we have

Λαβ =
∑ni |ΨαΨβ |

Ψ∗α Ψβ

|Ψα Ψβ |

∑ni |ΨαΨβ |
, Ωαβ =

∑ni |ΨαΨβ |
|Ψα |
|Ψβ |

∑ni |ΨαΨβ |
, Ωβα =

∑ni |ΨαΨβ |
|Ψβ |
|Ψα |

∑ni |ΨαΨβ |
.

(A.16)

Now, the quantities

Ψ∗αΨβ

|ΨαΨβ |
,
|Ψα |
|Ψβ |

and
|Ψβ |
|Ψα |

(A.17)

can be obtained by using the Metropolis-Hastings Monte-Carlo sampling over the distri-
bution with weight |ΨαΨβ |. We have O as the complex number and hence we write the
mean value over the trajectories as Omean = a+ ib. Therefore the magnitude of the mean
value becomes |Omean|=

√
a2 +b2. We compute the error ∆|Omean| as follows.
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(a). Error estimation

We have Omean = a+ ib and |Omean|=
√

a2 +b2, which lead to the following equations
as

∆Omean = ∆a+ i∆b and ∆|Omean|=

√( a
|Omean|

∆a
)2

+
( b
|Omean|

∆b
)2

. (A.18)

Now we evaluate ∆Omean as follows. We write from Eq. (A.13)

∆O =

[(
∂O

∂ [∑ni |Ψα |2]

)2
(∆[∑

ni

|Ψα |2])2 +
(

∂O
∂ [∑ni |Ψβ |2]

)2
(∆[∑

ni

|Ψβ |2])2

+
(

∂O
∂ [∑ni Ψ∗αΨβ ]

)2
(∆[∑

ni

Ψ
∗
αΨβ ])

2

] 1
2

.

(A.19)

Hence we write

∆Omean =

[( [∑ni Ψ∗αΨβ ]mean

2
√

[∑ni |Ψβ |2]mean[∑ni |Ψα |2]
3
2
mean

)2
(∆[∑

ni

|Ψα |2])2

+
( [∑ni Ψ∗αΨβ ]mean

2
√

[∑ni |Ψα |2]mean[∑ni |Ψβ |2]
3
2
mean

)2
(∆[∑

ni

|Ψβ |2])2

+
( 1
[∑ni |Ψα |2]mean[∑ni |Ψβ |2]mean

)2
(∆[∑

ni

Ψ
∗
αΨβ ])

2

] 1
2

.

(A.20)

We compute the quantities in the right hand side of Eq. (A.20) by using Eq. (A.11) and
estimate the error ∆|Omean|.
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Null Fields of the
Underlying Conformal
Field Theory

B

„The two most important days in your life are the
day you are born and the day you find out why.

— Mark Twain

In this Appendix, by following Ref. [69], we derive the null fields of the considered
conformal field theory [64] as mentioned in Chapter-4 in Sec. 4.3. We define the following
operators from the central charge c = 1 massless bosonic conformal field theory with the
compactification radius

√
q as

G±(z) = : ψ(z)e±i
√

qφ(z) : and J(z) =
i
√

q
∂zφ(z), (B.1)

where G±(z) and J(z) are the two chiral currents and the U(1) conformal current respec-
tively.

We introduce the following q+1 number of fields as

χ
p(v) =

∮
v

dz
2πi

1
(z− v)p G+(z)V1(v) with p ∈ {0,1, ...,q−3,q−2},

χ
q−1(v) =

∮
v

dz
2πi

[
1

(z− v)q−1 G+(z)V1(v) −
1

(z− v)
V2(v)

]
,

χ
q(v) =

∮
v

dz
2πi

1
z− v

[
1

(z− v)q−1 G+(z)V1(v)
]
−
∮

v

dz
2πi

1
z− v

qJ(z)V2(v),

(B.2)

where we define

Vn j(v) = χn j(v)Vn j(v) (B.3)

from Eq. (3.48) with η = 1 which are used in Chapter-4.
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We explicitly derive that the fields in Eq. (B.2) are null fields. Here we allow an
occupancy of n j ∈ {0,1,2} rather than just of n j ∈ {0,1}. We collect the following
expressions, which we utilize onwards, as

: eiαφ(z) :: eiβφ(v) : = (z− v)αβ : eiαφ(z)+iβφ(v) :,

ψi(z)ψ j(v) = δi j

[
1

z− v
+(z− v)A(v)+ ....

]
,

eiφ(z) ' ei[φ(v)+(z−v)∂vφ(v)] = eiφ(v)ei(z−v)∂vφ(v) ' eiφ(v)[1+ i(z− v)∂vφ(v)],

∂zφ(z) = ∂vφ(v)+(z− v)∂ 2
v φ(v)+ ....,

(B.4)

where the notation . . . stands for the terms that are proportional to (z− v)k with k ≥ 2.
We note that we do not require here the particular form of A(v) since the non-zero
contributions of the integrals in the null fields come from the terms having the simple
poles. The following proofs are applicable for all q≥ 2.

B.1 Null field χq(v)

We have

χ
q(v) =

∮
v

dz
2πi

1
z− v

[
1

(z− v)q−1 G+(z)V1(v)
]
−
∮

v

dz
2πi

1
z− v

qJ(z)V2(v)

= Iq
1(v)−I

q
2(v),

(B.5)

where
∮

v is the integration contour which is circling around v and conventionally we take
the counter-clockwise direction as the positive direction.

Now we evaluate the terms, having the non-zero contributions, in Eq. (B.5) as

Iq
1(v) =

∮
v

dz
2πi

1
z− v

[
1

(z− v)q−1 G+(z)V1(v)
]

=
∮

v

dz
2πi

1
z− v

[
1

(z− v)q−1 ψ(z)ψ(v)e+i
√

qφ(z)ei(q−1)φ(v)/
√

q
]

=
∮

v

dz
2πi

1
z− v

[
(z− v)q−1

(z− v)q−1 ψ(z)ψ(v)ei
√

qφ(z)+i(q−1)φ(v)/
√

q
]

=
∮

v

dz
2πi

1
z− v

[(
1

z− v
+(z− v)A(v)+ ...

)
ei
√

qφ(z)+i(q−1)φ(v)/
√

q
]

=
∮

v

dz
2πi

[
1

(z− v)2 ei
√

qφ(z)+i(q−1)φ(v)/
√

q
]

=
∮

v

dz
2πi

1
z− v

[
i
√

q∂vφ(v)ei(2q−1)φ(v)/
√

q
]

(B.6)
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and

Iq
2(v) =

∮
v

dz
2πi

1
z− v

[qJ(z)V2(v)]

=
∮

v

dz
2πi

1
z− v

[√
qi∂vφ(z)ei(2q−1)φ(v)/

√
q
]

=
∮

v

dz
2πi

1
z− v

[√
qi∂vφ(v)ei(2q−1)φ(v)/

√
q
]
.

(B.7)

We note that

Iq
1(v) = I

q
2(v) (B.8)

and thereby we find that χq(v) is a null field.

B.2 Null field χq−1(v)

We have

χ
q−1(v) =

∮
v

dz
2πi

1
(z− v)q−1 G+(z)V1(v)−

∮
v

dz
2πi

1
z− v
V2(v)

= Iq−1
1 (v)−Iq−1

2 (v).
(B.9)

Now we proceed in the same way as before and we get

Iq−1
1 (v) =

∮
v

dz
2πi

1
(z− v)q−1 G+(z)V1(v)

=
∮

v

dz
2πi

[
1

(z− v)q−1 ψ(z)ψ(v)e+i
√

qφ(z)ei(q−1)φ(v)/
√

q
]

=
∮

v

dz
2πi

[
(z− v)q−1

(z− v)q−1 ψ(z)ψ(v)ei
√

qφ(z)+i(q−1)φ(v)/
√

q
]

=
∮

v

dz
2πi

[(
1

z− v
+(z− v)A(v)+ ...

)
ei
√

qφ(z)+i(q−1)φ(v)/
√

q
]

=
∮

v

dz
2πi

[
1

(z− v)
ei
√

qφ(v)+i(q−1)φ(v)/
√

q
]

=
∮

v

dz
2πi

[
1

(z− v)
ei(2q−1)φ(v)/

√
q
]

(B.10)

and

Iq−1
2 (v) =

∮
v

dz
2πi

1
z− v
V2(v)

=
∮

v

dz
2πi

[
1

(z− v)
ei(2q−1)φ(v)/

√
q
] (B.11)

B.2 Null field χq−1(v) 163



We note that

Iq−1
1 (v) = Iq−1

2 (v) (B.12)

and hence we find that χq−1(v) is a null field.

B.3 Null fields χ p(v), p ∈ {0,1, ....,q−2}
We proceed in the same way as before and we write

χ
p(v) =

∮
v

dz
2πi

1
(z− v)p G+(z)V1(v)

=
∮

v

dz
2πi

[
1

(z− v)p ψ(z)ψ(v)e+i
√

qφ(z)ei(q−1)φ(v)/
√

q
]

=
∮

v

dz
2πi

[
(z− v)q−1

(z− v)p ψ(z)ψ(v)ei
√

qφ(z)+i(q−1)φ(v)/
√

q
]

=
∮

v

dz
2πi

(z− v)q−1

(z− v)p

[(
1

z− v
+(z− v)A(v)+ ...

)
ei
√

qφ(z)+i(q−1)φ(v)/
√

q
]

=
∮

v

dz
2πi

(z− v)q−1

(z− v)p

[(
1

z− v
+(z− v)A(v)+ ...

)
ei(2q−1)φ(v)/

√
q[1+ i

√
q(z− v)∂vφ(v)+ ....]

]
= 0

(B.13)

We find that no term in the above integral exhibits a simple pole to provide the non-
zero contribution, since p ∈ {0,1, ....,q−2}, and thereby we ensure that χ p(v) are null
fields.
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Operators Annihilating
the Lattice Moore-Read
States with Quasiholes

C

„A physicist is just an atom’s way of looking at
itself.

— Niels Bohr

We first derive the annihilation operators for the lattice Moore-Read states when
q≥ 2, η = 1 with occupancy n j ∈ {0,1,2} and containing an even number of quasiholes.
Next we use these results to derive the annihilation operators, which we provide in
Chapter-4 in Sec. 4.3 in Eq. (4.43), for the same systems but now with occupancy
n j ∈ {0,1}. Finally we derive the condition on η as mentioned in Chapter-4 in Sec. 4.3
in Eq. (4.52).

The starting point is to insert the null fields from Eq. (B.2) to the vacuum expectation
value of the primary chiral conformal fields, as given in Eqs. (3.48) and (3.53). This
procedure leads to the decoupling equations as [69]

〈0|
Q

∏
k=1

W (wk)
i−1

∏
j=1

Vn j(z j)χ
a(zi)

N

∏
j=i+1

Vn j(z j)|0〉= 0 with a ∈ {0,1, ...,q} (C.1)

and the next step is to rewrite those equations in the form of

Λ
a
i |Ψ

η=1,qh
α 〉= 0, (C.2)

where Λa
i are the operators which annihilate the wavefunctions.

C.1 η = 1 and occupancy n j ∈ {0,1,2}

We note that the correlator vanishes if the field at ith lattice site is replaced by the null
field. We derive the decoupling equations by deforming the integration contour over the
complex plane, by moving the operators G+(z) and J(z) in the null fields at different
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positions, and by using the operator product expansions together with the commutation
relations as follows

G+(z)Vn j(z j)∼ (−1)( j−1)

[
δn j,0 δn′j,1

z− z j

]
Vn′j

(z j),

G+(z)W (w j)∼ 0,

Vn j(z j)G+(z) = (−1)(q+1)n j−1G+(z)Vn j(z j),

J(z)Vn j(z j)∼
1
q
(qn j−1)

z− z j
Vn j(z j),

J(z)W (w j)∼
1
q

p j

z−w j
Wp j(w j),

: eiαφ(z) :: eiβφ(z j) : = (z− z j)
αβ : eiαφ(z)+iβφ(z j) :,

: eiαφ(z) :: eiβφ(z j) : = (−1)αβ : eiβφ(z j) :: eiαφ(z) :,
ψi(z)ψ j(z j) = δi j(−1)n jψi(z j)ψ j(z),

(C.3)

where the symbol ∼ means that we have considered the operator product expansions up
to the terms which provide the non zero contributions in our results.

The total number of particles at the jth lattice site is

n j = n(1)j +2n(2)j , (C.4)

where

n(1)j = d†
j d j and n(2)j = d′†j d′j (C.5)

define individual number of particles for the two levels

|0〉 ↔ |1〉 and |1〉 ↔ |2〉, (C.6)
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respectively. Those creation, annihilation and number operators act on the states of the
three level system. And thereby lead to the following equations with the proper sign
factors, which maintain that q even or q odd defines fermions or bosons respectively, as

d j|n j〉= (−1)(q+1)∑
j−1
k=1 nk


0 n j = 0
|0〉 n j = 1
0 n j = 2

(C.7)

d†
j |n j〉= (−1)(q+1)∑

j−1
k=1 nk


|1〉 n j = 0
0 n j = 1
0 n j = 2

(C.8)

d′j|n j〉= (−1)(q+1)∑
j−1
k=1 nk


0 n j = 0
0 n j = 1
|1〉 n j = 2

(C.9)

d′†j |n j〉= (−1)(q+1)∑
j−1
k=1 nk


0 n j = 0
|2〉 n j = 1
0 n j = 2

. (C.10)

We write the above mentioned operators, acting on the jth lattice site, in the matrix
form with respect to the basis (|0〉, |1〉, |2〉) as

d j =S

0 1 0
0 0 0
0 0 0

 , d†
j = S

0 0 0
1 0 0
0 0 0

 , d′j = S

0 0 0
0 0 1
0 0 0

 , (C.11)

d′†j =S

0 0 0
0 0 0
0 1 0

 , n(1)j =

0 0 0
0 1 0
0 0 0

 , n(2)j =

0 0 0
0 0 0
0 0 1

 , (C.12)

where

S = (−1)(q+1)∑
j−1
k=1 nk (C.13)

is the sign factor as already defined before.

We evaluate here the annihilation operator corresponding to the null field χq(v) form
Eq. (B.2) in details. Therefore we write

0 = 〈W (w1) . . .W (wQ)Vn1(z1) . . .Vni−1(zi−1)χ
q(zi)Vni+1(zi+1) . . .VnN (zN)〉

=
∮

zi

dz
2πi

1
(z− zi)q 〈W (w1) . . .W (wQ)Vn1(z1) . . .G+(z)V1(zi) . . .VnN (zN)〉

−q
∮

zi

dz
2πi

1
z− zi

〈W (w1) . . .W (wQ)Vn1(z1) . . .J(z)V2(zi) . . .VnN (zN)〉

= Iq
1 + Iq

2 .

(C.14)
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Now the term Iq
1 evaluates to

Iq
1 =

∮
zi

dz
2πi

1
(z− zi)q 〈W (w1) . . .W (wQ)Vn1(z1) . . .G+(z)V1(zi) . . .VnN (zN)〉

=−
N

∑
j=1(6=i)

∮
z j

dz
2πi

1
(z− zi)q 〈W (w1) . . .W (wQ)Vn1(z1) . . .G+(z)V1(zi) . . .VnN (zN)〉

=−(−1)i−1
i−1

∑
j=1

∮
z j

dz
2πi

(−1)(q+1)∑
i−1
k= j nk

(z− zi)q

δn j,0δn′j,1

z− z j

×〈W (w1) . . .W (wQ)Vn1(z1) . . .Vn′j
(z j) . . .V1(zi) . . .VnN (zN)〉

− (−1)i−1
N

∑
j=i+1

∮
z j

dz
2πi

(−1)(q+1)(−1)(q+1)∑
j−1
k=i+1 nk

(z− zi)q

δn j,0δn′j,1

z− z j

×〈W (w1) . . .W (wQ)Vn1(z1) . . .V1(zi) . . .Vn′j
(z j) . . .VnN (zN)〉

=−(−1)i−1
i−1

∑
j=1

(−1)(q+1)∑
i−1
k= j nk

(z j− zi)q δn j,0δn′j,1

×〈W (w1) . . .W (wQ)Vn1(z1) . . .Vn′j
(z j) . . .V1(zi) . . .VnN (zN)〉

− (−1)i−1
N

∑
j=i+1

(−1)(q+1)(−1)(q+1)∑
j−1
k=i+1 nk

(z j− zi)q δn j,0δn′j,1

×〈W (w1) . . .W (wQ)Vn1(z1) . . .V1(zi) . . .Vn′j
(z j) . . .VnN (zN)〉

=−(−1)i−1
i−1

∑
j=1

∑
n′j

(−1)(q+1)∑
i−1
k= j nk

(z j− zi)q δn j,0δn′j,1

×〈W (w1) . . .W (wQ)Vn1(z1) . . .Vn′j
(z j) . . .V1(zi) . . .VnN (zN)〉

− (−1)i−1
N

∑
j=i+1

∑
n′j

(−1)(q+1)(−1)(q+1)∑
j−1
k=i+1 nk

(z j− zi)q δn j,0δn′j,1

×〈W (w1) . . .W (wQ)Vn1(z1) . . .V1(zi) . . .Vn′j
(z j) . . .VnN (zN)〉

=−
i−1

∑
j=1

(−1)(q+1)∑
i−1
k= j+1 nk

(z j− zi)q δn j,0Ψ
η=1,qh
α (n1, . . . ,1, . . . ,1, . . . ,nN)

−
N

∑
j=i+1

(−1)(q+1)(−1)(q+1)∑
j−1
k=i+1 nk

(z j− zi)q δn j,0Ψ
η=1,qh
α (n1, . . . ,1, . . . ,1, . . . ,nN)

=−
i−1

∑
j=1

(−1)(q+1)(−1)(q+1)∑
i−1
k= j+1 nk

(zi− z j)q δn j,0Ψ
η=1,qh
α (n1, . . . ,1, . . . ,1, . . . ,nN)

−
N

∑
j=i+1

(−1)(q+1)∑
j−1
k=i+1 nk

(zi− z j)q δn j,0Ψ
η=1,qh
α (n1, . . . ,1, . . . ,1, . . . ,nN).

(C.15)
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Now we multiply Eq. (C.15) by

|n1, . . . ,ni−1,2,ni+1 . . . ,nN〉 (C.16)

and sum over all nk, k 6= i and thereby end up with

N

∑
j=1(6=i)

1
(zi− z j)q d jd

′†
i |Ψ

η=1,qh
α 〉. (C.17)

We evaluate the term Iq
2 as

Iq
2 =−q

∮
zi

dz
2πi

1
z− zi

〈W (w1) . . .W (wQ)Vn1(z1) . . .J(z)V2(zi) . . .VnN (zN)〉

= q
N

∑
j=1(6=i)

∮
z j

dz
2πi

1
z− zi

〈W (w1) . . .W (wQ)Vn1(z1) . . .J(z)V2(zi) . . .VnN (zN)〉

+q
Q

∑
j=1

∮
w j

dz
2πi

1
z− zi

〈W (w1) . . .W (wQ)Vn1(z1) . . .J(z)V2(zi) . . .VnN (zN)〉

=
N

∑
j=1(6=i)

∮
z j

dz
2πi

1
z− zi

(qn j−1)
z− z j

×〈W (w1) . . .W (wQ)Vn1(z1) . . .Vn j(z j) . . .V2(zi) . . .VnN (zN)〉

+
Q

∑
j=1

∮
w j

dz
2πi

1
z− zi

p j

z−w j
〈W (w1) . . .W (wQ)Vn1(z1) . . .V2(zi) . . .VnN (zN)〉

=
N

∑
j=1( 6=i)

(qn j−1)
z j− zi

〈W (w1) . . .W (wQ)Vn1(z1) . . .Vn j(z j) . . .V2(zi) . . .VnN (zN)〉

+
Q

∑
j=1

p j

w j− zi
〈W (w1) . . .W (wQ)Vn1(z1) . . .V2(zi) . . .VnN (zN)〉

(C.18)

We multiply Eq. (C.18) by

|n1, . . . ,ni−1,2,ni+1 . . . ,nN〉= ∑
n′i

n(2)i |n1, . . . ,n′i, . . . ,nN〉, (C.19)

and sum over all nk, k 6= i to get

−
N

∑
j=1( 6=i)

qn j−1
zi− z j

n(2)i |Ψ
η=1,qh
α 〉−

Q

∑
j=1

p j

zi−w j
n(2)i |Ψ

η=1,qh
α 〉. (C.20)

Now we add Eq, (C.17) and Eq. (C.20) and thereby we obtain

λ
q
i |Ψ

η=1,qh
α 〉= 0, (C.21)
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where we have

λ
q
i =

N

∑
j=1( 6=i)

d jd
′†
i

(zi− z j)q −
N

∑
j=1(6=i)

qn j−1
zi− z j

n(2)i −
Q

∑
j=1

p j

zi−w j
n(2)i (C.22)

We proceed in the same way as before and, by using the other null fields in Eq (B.2),
we end up with the following annihilation operators for the states as

λ
0 = ∑

i
di, λ

p
i

p=1,...,q−2
= ∑

j( 6=i)

1
(zi− z j)p d jd

′†
i ,

λ
q−1
i = ∑

j( 6=i)

1
(zi− z j)q−1 d jd

′†
i +n(2)i .

(C.23)

C.2 η = 1 and occupancy n j ∈ {0,1}

We derive here the operators annihilating the states for the occupancy n j ∈ {0,1} by using
the operators as derived in Eqs. (C.22) and (C.23). We start by dividing the total Hilbert
spaceH1 +H2 into the two subspacesH1 andH2. HereH1 is the space which consists
of all the states with no doubly occupied lattice sites, andH2 is the space consisting of all
the states with at least one doubly occupied lattice site. Therefore the operators for the
occupancy n j ∈ {0,1} lie inH1 and the operators for the occupancy n j ∈ {0,1,2} reside
in H1 +H2. We project the operators in H1 +H2 space to H1 space in order to obtain
the desired operators.

We commence by multiplying the operators

λ
a
i , a ∈ {0,1, ....,q}, (C.24)

as derived in Eqs. (C.22) and (C.23), by d
′
i from the left. Since we have

d
′
id
′†
i = n(1)i , (C.25)

which acts on theH1 only, therefore the operators

d
′
iλ

a
i , a ∈ {0,1, ....,q−2} (C.26)

annihilate the states for the occupancy n(1)j ∈ {0,1}. We note that d
′
iλ

q−1
i annihilates the

wavefunctions for the occupancy n j ∈ {0,1,2} and hence we can write[
d
′
i + ∑

j( 6=i)

1
(zi− z j)q−1 d jn

(1)
i

]
|Ψη=1,qh

α 〉= 0. (C.27)
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This allows us to replace the d
′
i operator in d

′
iλ

q
i by

− ∑
h( 6=i)

1
(zi− zh)q−1 dhn(1)i . (C.28)

Therefore we obtain the following annihilation operators, after making the projection,
as

Λ
0 = ∑

i
di, Λ

p
i

p=1,...,q−2
= ∑

j( 6=i)

1
(zi− z j)p d jn

(1)
i ,

Λ
q−1
i =

[
∑

j( 6=i)

d jn
(1)
i

(zi− z j)q + ∑
h(6=i)

[qn(1)j −1]dhn(1)i

(zi− zh)q−1(zi− z j)

]
+∑

j
∑

h( 6=i)

p jdhn(1)i
(zi− zh)q−1(zi−w j)

(C.29)

These operators annihilate the states with occupancy n(1)j ∈ {0,1}. We denote n(1)j as
n j in Chapter-4 in Sec. 4.3.

C.3 Condition on η

We first derive the condition on the charge P/q at infinity. Then we use the relation

P = N(1−η) (C.30)

to obtain the condition on η . The starting point is that if we insert a null field then the
correlator in Eq. (4.6) becomes zero as

〈
Q

∏
k=1

W (wk)ΞP(ξ → ∞)
i−1

∏
j=1

Vn j(z j)χ
a(zi)

N

∏
j=i+1

Vn j(z j)〉= 0, where a ∈ {0,1, ....,q}.

(C.31)

We derive the above correlator for different parts of all the null fields as given in Eq.
(B.2). Now for the following term we have

−
∮

v

dz
2πi

1
z− v

qJ(z)V2(v)

=−q
∮

zi

dz
2πi

1
z− zi

〈W (w1) . . .W (wQ)ΞP(ξ )Vn1(z1) . . .J(z)V2(zi) . . .VnN (zN)〉
(C.32)

We proceed in the same way as before and multiply the term in Eq. (C.32) by

|n1, . . . ,ni−1,2,ni+1 . . . ,nN〉= ∑
n′i

n(2)i |n1, . . . ,n′i, . . . ,nN〉, (C.33)
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and sum over all nk, k 6= i. We thereby obtain the term as[
−

N

∑
j=1( 6=i)

qn j−1
zi− z j

n(2)i |−
Q

∑
j=1

p j

zi−w j
n(2)i −

P
zi−ξ

n(2)i

]
|Ψη=1,qh

α 〉, (C.34)

where we note that the last term in Eq. (C.34) vanishes in the limit ξ → ∞.

Similarly for the following term we have

−
∮

v

dz
2πi

1
z− v
V2(v)

=−
∮

zi

dz
2πi

1
z− zi

〈W (w1) . . .W (wQ)ΞP(ξ )Vn1(z1) . . .V2(zi) . . .VnN (zN)〉
(C.35)

and proceeding as before we get

n(2)i |Ψ
η=1,qh
α 〉. (C.36)

Now we consider the following term as∮
v

dz
2πi

1
(z− v)a G+(z)V1(v), where a ∈ {0,1, ....,q}. (C.37)

and thereby we have∮
zi

dz
2πi

1
(z− zi)a 〈W (w1) . . .W (wQ)ΞP(ξ )Vn1(z1) . . .G+(z)V1(zi) . . .VnN (zN)〉 (C.38)

which after the contour deformation becomes

−
N

∑
j=1( 6=i)

∮
z j

dz
2πi

1
(z− zi)q 〈W (w1) . . .W (wQ)ΞP(ξ )Vn1(z1) . . .G+(z)V1(zi) . . .VnN (zN)〉

−
∮

ξ

dz
2πi

1
(z− zi)q 〈W (w1) . . .W (wQ)ΞP(ξ )Vn1(z1) . . .G+(z)V1(zi) . . .VnN (zN)〉.

(C.39)

Now we proceed as before and multiply the first term in Eq. (C.39) by

|n1, . . . ,ni−1,2,ni+1 . . . ,nN〉 (C.40)

and sum over all nk, k 6= i and thereby we find

N

∑
j=1( 6=i)

1
(zi− z j)q d jd

′†
i |Ψ

η=1,qh
α 〉. (C.41)
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Let us evaluate the second term in Eq (C.39) as

− (−1)i−1+p
∑
ni

δni=1

∮
ξ

dz
2πi

(−1)−(i−1)ni

(z− zi)a (−1)(q+1)∑
i−1
k=1 nk

×〈W (w1) . . .W (wQ)ΞP(ξ )Vn1(z1) . . .G+(z)V1(zi) . . .VnN (zN)〉.
(C.42)

Now we compute the contour integral and write Eq. (C.42) as

− (−1)i−1+P
δP<0 ∑

ni

δni=1 lim
z→ξ

1
(−P−1)!

d−P−1

dz−P−1
(−1)−(i−1)ni

(z− zi)a (−1)(q+1)∑
i−1
k=1 nk

δn Pf(A) ∏
i, j
(wi− z

′
j)
−1
2 ∏

j
(z− z j)

(qn j−1)
∏

j
(−1)( j−1)n j ∏

j
(ξ − z j)

(qn j−1)Pq

∏
j
(−1)( j−1)n j ∏

j<k
(z j− zk)

(qn j−1)(qnk−1)/q
∏
j<k

(w j−wk)
p j pk

q ∏
j,k
(w j− zk)

(qnk−1)p j/q,

(C.43)

where we have δn = 1 if the total number of particles is

M = (N−P−∑
k

pk−q)/q (C.44)

and we have δn = 0 otherwise.

Now Eq. (C.43) = 0 gives rise to the restriction on the choice of P and hence on the
choice of η . This also keeps the derived annihilation operators in Eq. (C.29) unchanged.
Now we note that the expression in Eq (C.43) is zero if P > 0 due to the factor δP<0. We
inspect the derivative and the exponent of the polynomial to find that Eq. (C.43) is also
zero when

P >−q−a−∑
k

pk +Q. (C.45)

Since we have a ∈ {0,1, ....,q}, then we can safely use the maximum value of a in that
expression to write

P >−2q−∑
k

pk +Q. (C.46)

Now we use the following relation

P = N(1−η) (C.47)

to get the condition on η as

η < 1+
1
N

(
2q+

Q

∑
k=1

pk−Q
)
. (C.48)

In the thermodynamic limit N→ ∞, this condition becomes η < 1.
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Wavefunction in the
Limit of Small Λ

D

„In physics, you don’t have to go around making
trouble for yourself - nature does it for you.

— Frank Wilczek

In this section, we derive an expression for the wavefunction when (8.30) applies. As
mentioned in the main text, we number the spins with σ j > 0 from 1 to N+ and the spins
with σ j < 0 from N++1 to N = N++N−. First we note that

z j− zk = σ jeΛ f ( j)−σkeΛ f (k) = eΛ[ f ( j)+ f (k)]/2×{σ jeΛ[ f ( j)− f (k)]/2−σke−Λ[ f ( j)− f (k)]/2}

≈
{

Λ[ f ( j)− f (k)]σ jeΛ[ f ( j)+ f (k)]/2 for σ j = σk
2σ jeΛ[ f ( j)+ f (k)]/2 for σ j =−σk

.

(D.1)

The factor

∏
j<k
{2eΛ[ f ( j)+ f (k)]/2}(s jsk−1)/2 = e∑ j<k{Λ[ f ( j)+ f (k)]/2+ln(2)}(s jsk−1)/2

= e∑ j,k{Λ[ f ( j)+ f (k)]/2+ln(2)}(s jsk−1)/4

= e∑ j[−NΛ f ( j)−N ln(2)]/4

(D.2)

does not depend on s j, so it will be absorbed in the normalization of the wavefunction
and can be ignored. We are hence left with

ψs1,...,sN (z1, . . . ,zN)≈ constant×δs
N

∏
p=1

χp,sp ∏
j<k

σ
1
2 (s jsk−1)
j

× ∏
{ j<k|σ j=σk}

{Λ[ f ( j)− f (k)]/2}
1
2 (s jsk−1).

(D.3)

Let us introduce the notation

s+ ≡ ∑
{ j|σ j=+1}

s j and s− ≡ ∑
{ j|σ j=−1}

s j. (D.4)
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We then have

∏
j<k

σ
1
2 (s jsk−1)
j = (−1)∑{ j<k|σ j=−1}(s jsk−1)/2

= (−1)∑{ j<k|σ j=σk=−1}(s jsk−1)/2

= (−1)∑{ j,k|σ j=σk=−1}(s jsk−1)/4
= (−1)(s

2
−−N2

−)/4,

(D.5)

where we have used that the spins with σ j < 0 have higher indices than those with σ j > 0.
We also have

N

∏
p=1

χp,sp =
N+

∏
p=1

χp,sp

N−

∏
p=1

eiπ(N++p−1)(1+sN++p)/2

=
N−

∏
p=1

(−1)N+(1+sN++p)/2
N+

∏
p=1

χp,sp

N−

∏
p=1

χp,sN++p

= (−1)N+(N−+s−)/2
N+

∏
p=1

χp,sp

N−

∏
p=1

χp,sN++p .

(D.6)

Now we note that

∏
{ j<k|σ j=σk}

Λ
1
2 (s jsk−1) = ∏

{ j,k|σ j=σk}
Λ

1
4 (s jsk−1) = Λ

1
4 (s

2
+−N2

++s2
−−N2

−).

Therefore, in the limit (8.30), only configurations that minimize s2
++ s2

− will remain. If
N+ and N− are both even, we have that s2

++ s2
− is minimized for s+ = s− = 0. In other

words, δs is replaced by δs+δs− . If N+ and N− are both odd, it is not possible to have
s+ = 0 or s− = 0, and we minimize s2

++ s2
− for the choice s+ =−s− =+1 and for the

choice s+ = −s− = −1. In that case, δs is replaced by δs+=1δs−=−1 and δs+=−1δs−=1,
respectively. The relative sign of the two terms in the wavefunction is

(−1)N+(N−−1)/2−N+(N−+1)/2 =−1. (D.7)

Inserting the above observations into (D.3), we obtain (8.33) and (8.34) in the main
text.
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Wavefunction in the
Limit of Large Λ

E

„All of physics is either impossible or trivial. It is
impossible until you understand it, and then it
becomes trivial.

— Ernest Rutherford

To determine the form of the wavefunction (8.4) with coordinates (8.23) in the limit
(8.38), we first write the wavefunction as follows

δs
N

∏
p=1

χp,sp ∏
j<k

(z j− zk)
1
2 (s jsk−1) =δs

N

∏
p=1

χp,sp ∏
j<k

[
������
σ2 jeΛ f (2 j) −σ2keΛ f (2k)

](s2 js2k−1)/2

×∏
j<k

[
��������
σ2 j−1eΛ f (2 j−1) −σ2k−1eΛ f (2k−1)

](s2 j−1s2k−1−1)/2

×∏
j<k

[
������
σ2 jeΛ f (2 j) −σ2k−1eΛ f (2k−1)

](s2 js2k−1−1)/2

×∏
j<k

[
��������
σ2 j−1eΛ f (2 j−1) −σ2keΛ f (2k)

](s2 j−1s2k−1)/2

×
N/2

∏
k=1

[
σ2k−1eΛ f (2k−1)−σ2keΛ f (2k)

](s2k−1s2k−1)/2
.

(E.1)

For the sake of generality, we shall here assume that the σk are general phase factors
not restricted to being plus or minus one. Utilizing (8.38), we can ignore the terms that
are crossed out in the above expression. Let us define σ̃(2k) and f̃ (2k) such that

− σ̃2keΛ f̃ (2k) =−σ2keΛ f (2k)+σ2k−1eΛ f (2k−1). (E.2)

Since f (2k)≥ f (2k−1), we must have f̃ (2k)≤ f (2k)+ ln(2)/Λ.
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With the definition (E.2) we get that (E.1) simplifies to

δs
N

∏
p=1

χp,sp ∏
j<k

(z j− zk)
1
2 (s jsk−1) ≈ constant×δseΛF

N

∏
p=1

χp,sp

×∏
j<k

(−σk)
(s jsk−1)/2

N/2

∏
k=1

(
σ̃2k

σ2k

)(s2k−1s2k−1)/2

,

(E.3)

where

F ≡
N/2

∑
k=2

[ f (2k−1)s2k−1 + f (2k)s2k]
k−1

∑
j=1

(s2 j−1 + s2 j)+
N/2

∑
k=1

f̃ (2k)s2k−1s2k. (E.4)

The configurations with the highest weight in the wavefunction are hence those that
maximize F under the constraint ∑ j s j = 0. In appendix F, we show that, under the
constraint ∑ j s j = 0, F is maximal for all configurations fulfilling s2 j−1 + s2 j = 0 for
all j ∈ {1,2, . . . ,N/2}. We also show that all other configurations with ∑ j s j = 0 have
negligible weight, when the approximation (8.38) applies.

To show that the wavefunction is a product of singlets, we additionally need to show
that the wavefunction has the right phase factors. The phase of the wavefunction for a
given configuration is

N

∏
p=1

χp,sp ∏
j<k

(−σk)
(s jsk−1)/2

N/2

∏
k=1

(
σ̃2k

σ2k

)(s2k−1s2k−1)/2

. (E.5)

Utilizing that s2 j−1 + s2 j = 0 for all contributing configurations, we get

k−1

∑
j=1

s jsk =

{
−1 for k even
0 for k odd , (E.6)

and it follows that the latter two products in (E.5) do not depend on the configuration.

From the definition of χp,sp , one can check that

χ2 j−1,+1χ2 j,−1 =−χ2 j−1,−1χ2 j,+1. (E.7)

The phase factors of the terms in the wavefunction are hence precisely those for a product
of singlets.
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Derivation of an
Inequality

F

„The true laboratory is the mind, where behind
illusions we uncover the laws of truth.

— Jagadish Chandra Bose

To show that precisely the configurations with s2 j−1+s2 j = 0 for all j ∈ {1,2, . . . ,N/2}
maximize F under the constraint ∑ j s j = 0, we first note that

F =
N/2

∑
k=2

[ f (2k−1)s2k−1 + f (2k)s2k]
k−1

∑
j=1

(s2 j−1 + s2 j)+
N/2

∑
k=1

f̃ (2k)s2k−1s2k

=
1
2

N/2

∑
k=2

[ f (2k)+ f (2k−1)] (s2k + s2k−1)
k−1

∑
j=1

(s2 j−1 + s2 j)+
N/2

∑
k=1

f̃ (2k)(s2k−1s2k +1)

+
1
2

N/2

∑
k=2

[ f (2k)− f (2k−1)] (s2k− s2k−1)
k−1

∑
j=1

(s2 j−1 + s2 j)−
N/2

∑
k=1

f̃ (2k).

With this expression, it is natural to group the spins together in pairs. We define

t j =
1
2
(s2 j−1 + s2 j), j ∈ {1,2, . . . ,N/2}. (F.1)

We note that t j can take the values −1, 0, or +1. We shall refer to these as negative
defect, no defect, and positive defect, respectively. Note also that the condition ∑

N
j=1 s j = 0

translates into ∑
N/2
j=1 t j = 0, so for a given choice of configuration, the number of positive

defects must equal the number of negative defects. Let us consider a configuration with
defects at a1 < a2 < .. . < aD, where a j ∈ {1,2, . . . ,N/2}. The factor (s2k− s2k−1) is
zero if there is a defect at position k, and can be either plus or minus two if there is no
defect. The choice of sign does not affect other parts of the right hand side of (F.1), and
we get the largest value of the right hand side if the sign of (s2k− s2k−1) always cancels
the sign of

k−1

∑
j=1

(s2 j−1 + s2 j). (F.2)
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We can therefore rewrite (F.1) into

1
2

F +
1
2

N/2

∑
k=1

f̃ (2k)≤
N/2

∑
k=2

[ f (2k)+ f (2k−1)] tk
k−1

∑
j=1

t j +
N/2

∑
k=1

f̃ (2k)|tk|

+
N/2

∑
k=2

[ f (2k)− f (2k−1)] (1−|tk|)

∣∣∣∣∣k−1

∑
j=1

t j

∣∣∣∣∣ .
(F.3)

We note that the right hand side of this expression is zero if no defects are present.

We now pair up the positive and negative defects in an iterative process as follows. In
each iteration step, we pair aq with ap according to the following rules:

1. q is the lowest possible number such that aq is a defect that has not yet been paired.

2. p is the lowest possible number such that

• ap is a defect that has not yet been paired

• tap =−taq

• ∑
p−1
x=q+1 tax = 0

We repeat this process until all defects have been paired. An example is shown in Fig.
F.1

Figure F.1.: Example of the pairing of spins and defects used in the derivation. The figure shows
the spins 1,2, . . . ,N in the wavefunction (8.4). Each spin is shown as a black arrow.
An arrow pointing up or down represents the spin state s j = +1 or s j = −1. The
red circles illustrate the pairing of neighboring spins, as for example spin 1 with
spin 2, spin 3 with spin 4, . . . , spin N−1 with spin N. If the neighboring spins are
both up, this leads to a positive defect, which is labeled as +1, if the neighboring
spins are both down, this leads to a negative defect, which is labeled as −1, and if
one spin is up and one is down, it leads to a neutral site with no defect, which is
labeled as 0. Defects with opposite signs are then paired. We first pair the defects,
for which the two defects are neighbors or only have neutral sites between them.
These pairs are marked with the four green arrows. We then pair defects, for which
the two defects are neighbors if we ignore neutral sites and defects that we have
already paired. There is one such pair in the figure, and it is marked with a yellow
arrow. We continue this procedure until all defects have been paired.
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Unless there are no defects in the system, there will always be at least one value of p
for which ap and ap+1 have been paired. Let us first consider such a pair. We introduce
the notation

vp =
ap−1

∑
j=1

t j =
p−1

∑
j=1

ta j . (F.4)

We note that vp+1 = vp + tap . With the choice of pairing we have made, vp+1 is nonzero
and vp+1 and tap+1 have opposite signs. Since vp+1 and vp are integers fulfilling |vp+1−
vp|= 1, vp is either zero or has the same sign as vp+1. Furthermore, since tap =−tap+1 , it
also follows that tap and vp have the same sign if vp is nonzero. Therefore

|vp+1|= |vp + tap |= |vp|+1. (F.5)

It follows that

tapvp = |tap ||vp|= |vp|, (F.6)

tap+1vp+1 =−|tap+1 ||vp+1|=−|vp|−1. (F.7)

Utilizing this result, we find that the terms on the right hand side of (F.3), which have
k ∈ {ap,ap +1, . . . ,ap+1}, add up to

ap+1

∑
k=ap

[ f (2k)+ f (2k−1)] tk
k−1

∑
j=1

t j +
ap+1

∑
k=ap

f̃ (2k)|tk|+
ap+1

∑
k=ap

[ f (2k)− f (2k−1)] (1−|tk|)

∣∣∣∣∣k−1

∑
j=1

t j

∣∣∣∣∣
= [ f (2ap)+ f (2ap−1)] |vp|−

[
f (2ap+1)+ f (2ap+1−1)

]
(|vp|+1)

+ f̃ (2ap)+ f̃ (2ap+1)+
ap+1−1

∑
k=ap+1

[ f (2k)− f (2k−1)] (|vp|+1)

= f̃ (2ap)− f (2ap)+ f̃ (2ap+1)− f (2ap+1)− [ f (2ap+1)− f (2ap−1)]|vp|

−
ap+1−1

∑
k=ap

[ f (2k+1)− f (2k)] (|vp|+1)

(F.8)

So far we have not made assumptions about f̃ . For the case of interest here, however,
we know that

f̃ (2ap)− f (2ap) and f̃ (2ap+1)− f (2ap+1) (F.9)

are both at most ln(2)/Λ. On the other hand, we know due to (8.38) that the last term
on the right hand side of (F.8) is much more negative than −2ln(2)/Λ even for |vp|= 0.
Hence the right hand side of (F.8) is negative.

We then repeat the same computation for all other pairs of defects aq and ap for which
|p−q|= 1. When we have done that, we remove all defects from the set {a1,a2, . . . ,aD}
that we have already taken into account and repeat the same computations for the pairs of
defects, for which the defects in the pair are neighbors in the new set. We have shown an
example as the pair marked with the yellow arrow in Fig. F.1. The computation is again
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the same as above, except that some values of k between aq and ap are omitted from the
sums, since we have already taken them into account. This does, however, not change the
conclusion that the result is negative. We repeat this procedure until all defect pairs have
been taken into account. Since the contribution from each pair is negative, we conclude
that

F ≤−
N/2

∑
k=1

f̃ (2k), (F.10)

and equality is only obtained if there are no defects, that is if

s2 j−1 + s2 j = 0 for all j ∈ {1,2, . . . ,N/2}. (F.11)

It also follows from the above derivation and (8.38) that the next highest value of eΛF is
much lower than the highest value of eΛF , so only configurations fulfilling s2 j−1+ s2 j = 0
contribute significantly to the wavefunction.

Let us finally comment that the result (F.11) is valid independent of (8.38) if f (N)≥
f (N−1)> f (N−2)≥ f (N−3)> .. .≥ f (1) and f̃ (2k)≤ f (2k) for all k. The particular
case f̃ (2k) = f (2k) leads to

∑
j<k

f (k)s jsk ≤−
N/2

∑
k=1

f (2k) for ∑
j

s j = 0, (F.12)

with equality obtained only for spin configurations fulfilling s2 j−1 + s2 j = 0.
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