3,878 research outputs found

    Sandpile model on a quenched substrate generated by kinetic self-avoiding trails

    Full text link
    Kinetic self-avoiding trails are introduced and used to generate a substrate of randomly quenched flow vectors. Sandpile model is studied on such a substrate with asymmetric toppling matrices where the precise balance between the net outflow of grains from a toppling site and the total inflow of grains to the same site when all its neighbors topple once is maintained at all sites. Within numerical accuracy this model behaves in the same way as the multiscaling BTW model.Comment: Four pages, five figure

    Sandpile model on an optimized scale-free network on Euclidean space

    Full text link
    Deterministic sandpile models are studied on a cost optimized Barab\'asi-Albert (BA) scale-free network whose nodes are the sites of a square lattice. For the optimized BA network, the sandpile model has the same critical behaviour as the BTW sandpile, whereas for the un-optimized BA network the critical behaviour is mean-field like.Comment: Five pages, four figure

    Precise toppling balance, quenched disorder, and universality for sandpiles

    Full text link
    A single sandpile model with quenched random toppling matrices captures the crucial features of different models of self-organized criticality. With symmetric matrices avalanche statistics falls in the multiscaling BTW universality class. In the asymmetric case the simple scaling of the Manna model is observed. The presence or absence of a precise toppling balance between the amount of sand released by a toppling site and the total quantity the same site receives when all its neighbors topple once determines the appropriate universality class.Comment: 5 Revtex pages, 4 figure

    Proof by analogy in mural

    Get PDF
    One of the most important advantages of using a formal method of developing software is that one can prove that development steps are correct with respect to their specification. Conducting proofs by hand, however,can be time consuming to the extent that designers have to judge whether a proof of a particular obligation is worth conducting. Even if hand proofs are worth conducting, how do we know that they are correct? One approach to overcoming this problem is to use an automatic theorem proving system to develop and check our proofs. However, in order to enable present day theorem provers to check proofs, one has to conduct them in much more detail than hand proofs. Carrying out more detailed proofs is of course more time consuming. This paper describes the use of proof by analogy in an attempt to reduce the time spent on proofs. We develop and implement a proof follower based on analogy and present two examples to illustrate its characteristics. One example illustrates the successful use of the proof follower. The other example illustrates that the follower's failure can provide a hint that enables the user to complete a proof

    Self-Structuring of Granular Media under Internal Avalanches

    Full text link
    We study the phenomenon of internal avalanching within the context of recently proposed ``Tetris'' lattice models for granular media. We define a recycling dynamics under which the system reaches a steady state which is self-structured, i.e. it shows a complex interplay between textured internal structures and critical avalanche behavior. Furthermore we develop a general mean-field theory for this class of systems and discuss possible scenarios for the breakdown of universality.Comment: 4 pages RevTex, 3 eps figures, revised version to appear in Phys. Rev. Let

    Clustering properties of a generalised critical Euclidean network

    Full text link
    Many real-world networks exhibit scale-free feature, have a small diameter and a high clustering tendency. We have studied the properties of a growing network, which has all these features, in which an incoming node is connected to its iith predecessor of degree kik_i with a link of length ℓ\ell using a probability proportional to kiÎČℓαk^\beta_i \ell^{\alpha}. For α>−0.5\alpha > -0.5, the network is scale free at ÎČ=1\beta = 1 with the degree distribution P(k)∝k−γP(k) \propto k^{-\gamma} and Îł=3.0\gamma = 3.0 as in the Barab\'asi-Albert model (α=0,ÎČ=1\alpha =0, \beta =1). We find a phase boundary in the α−ÎČ\alpha-\beta plane along which the network is scale-free. Interestingly, we find scale-free behaviour even for ÎČ>1\beta > 1 for α<−0.5\alpha < -0.5 where the existence of a new universality class is indicated from the behaviour of the degree distribution and the clustering coefficients. The network has a small diameter in the entire scale-free region. The clustering coefficients emulate the behaviour of most real networks for increasing negative values of α\alpha on the phase boundary.Comment: 4 pages REVTEX, 4 figure

    Scale-free network on a vertical plane

    Full text link
    A scale-free network is grown in the Euclidean space with a global directional bias. On a vertical plane, nodes are introduced at unit rate at randomly selected points and a node is allowed to be connected only to the subset of nodes which are below it using the attachment probability: πi(t)∌ki(t)ℓα\pi_i(t) \sim k_i(t)\ell^{\alpha}. Our numerical results indicate that the directed scale-free network for α=0\alpha=0 belongs to a different universality class compared to the isotropic scale-free network. For α<αc\alpha < \alpha_c the degree distribution is stretched exponential in general which takes a pure exponential form in the limit of α→−∞\alpha \to -\infty. The link length distribution is calculated analytically for all values of α\alpha.Comment: 4 pages, 4 figure

    Order Parameter and Scaling Fields in Self-Organized Criticality

    Full text link
    We present a unified dynamical mean-field theory for stochastic self-organized critical models. We use a single site approximation and we include the details of different models by using effective parameters and constraints. We identify the order parameter and the relevant scaling fields in order to describe the critical behavior in terms of usual concepts of non equilibrium lattice models with steady-states. We point out the inconsistencies of previous mean-field approaches, which lead to different predictions. Numerical simulations confirm the validity of our results beyond mean-field theory.Comment: 4 RevTex pages and 2 postscript figure

    Confined optical phonon modes in polar tetrapod nanocrystals detected by resonant inelastic light scattering

    Full text link
    We investigated CdTe nanocrystal tetrapods of different sizes by resonant inelastic light scattering at room temperature and under cryogenic conditions. We observe a strongly resonant behavior of the phonon scattering with the excitonic structure of the tetrapods. Under resonant conditions we detect a set of phonon modes that can be understood as confined longitudinal-optical phonons, surface-optical phonons, and transverse-optical phonons in a nanowire picture.Comment: 12 pages, 4 figure
    • 

    corecore