3,282 research outputs found

    A nonlinear Schr\"odinger equation for water waves on finite depth with constant vorticity

    Full text link
    A nonlinear Schr\"odinger equation for the envelope of two dimensional surface water waves on finite depth with non zero constant vorticity is derived, and the influence of this constant vorticity on the well known stability properties of weakly nonlinear wave packets is studied. It is demonstrated that vorticity modifies significantly the modulational instability properties of weakly nonlinear plane waves, namely the growth rate and bandwidth. At third order we have shown the importance of the coupling between the mean flow induced by the modulation and the vorticity. Furthermore, it is shown that these plane wave solutions may be linearly stable to modulational instability for an opposite shear current independently of the dimensionless parameter kh, where k and h are the carrier wavenumber and depth respectively

    Spinning nanorods - active optical manipulation of semiconductor nanorods using polarised light

    Full text link
    In this Letter we show how a single beam optical trap offers the means for three-dimensional manipulation of semiconductor nanorods in solution. Furthermore rotation of the direction of the electric field provides control over the orientation of the nanorods, which is shown by polarisation analysis of two photon induced fluorescence. Statistics over tens of trapped agglomerates reveal a correlation between the measured degree of polarisation, the trap stiffness and the intensity of the emitted light, confirming that we are approaching the single particle limit.Comment: 7 pages, 4 figure

    A Quality of Service Based Model for Supporting Mobile Secondary Users in Cognitive Radio Technology

    Get PDF
    Current wireless networks are characterized by a static spectrum allocation policy, where governmental agencies assign wireless spectrum to license holders on a long-term basis for large geographical regions. The operators claim that the spectrum bands for mobile operation are highly occupied. Even then, a significant amount of licensed spectrum remains underutilized. Cognitive radio senses the radio environment with a twofold objective: identify those subbands of the radio spectrum that are underutilized by the primary (i.e., legacy) users and providing the means for making those bands available for employment by secondary (i.e., unlicensed) users. For unlicensed communication, the Quality of Service parameters need to be considered. Quality of Service comprises of channel availability, accessibility, and maintainability. Assessment of vacant channels of licensed band in a geographical region is termed as availability. An analysis of the collected data lead to arrive at the conclusion that more than one-eighth part of resources of each band are nearly permanently vacant, which is enough to design in-band common control signaling methods for cognitive radio. Measurement result plot of vacant channels in cities with known population will help to assess availability of vacant channels for any city and hence, measurement complexity can be avoided. The strategy to occupy the vacant channels without disturbing the primary user operation is referred as accessibility (or selection). Accessibility of a channel is dependent on blocking probability (or Quality of Service) measured in duration of minutes instead of hours. Instantaneous blocking probability has been calculated based on current minute occupancy for all available channels as reference. A comprehensive prediction model is employed in the proposed work to compute the instantaneous blocking probability both on immediate minute occupancy basis and its preceding 60 min basis from time of request by SU. Validation through actual data establishes that channelized blocking probability estimation model has lower error value compared to estimation through prediction models of other researchers. It was also observed that hourly basis prediction model has constant blocking probability value during clock hour, whereas minutewise Grade of Service (GoS) prediction model addresses the local peak demand and hence leads to a stringent GoS estimation. On secondary user request for vacant channel, the cognitive radio network needs to evaluate the expected holding time of the particular Secondary User and to ensure channel maintainability (or allocation), and it shall predict that the allotted channel shall be able to provide interruption-free service for holding time duration. Minutewise channel occupancy traffic is bumpy in nature; hence, the present work predicts call arrival rate using Holt Winter’s method. Also, at the instant of SU channel request, the channel allocation processor inputs all PU channel status minutewise, calculates actual mean residual lifetime (MRL) in minutes for each vacant channel and selects the channel with highest predicted free time. A simulation program runs on data collected from mobile switch of cellular network, which creates pseudo-live environment for channel allocation. The present work has compared the mean residual lifetime (MRL) method with the other researchers using probabilistic method of channel allocation and MRL method has been established as more accurate. The selection and allocation process with defined blocking probability model has been verified retrieving big data from data warehouse

    Dyadic existential rules

    Get PDF
    In the field of ontology-based query answering, existential rules (a.k.a. tuple-generating dependencies) form an expressive Datalog-based language to specify implicit knowledge. The presence of existential quantification in rule-heads, however, makes the main reasoning tasks undecidable. To overcome this limitation, in the last two decades, a number of classes of existential rules guaranteeing the decidability of query answering have been proposed. Unfortunately, such classes are typically based on different syntactic conditions imposing the development of different ad hoc reasoners. This paper introduces a novel general condition that allows to define, systematically, from any decidable class C of existential rules, a new class called Dyadic-C that enjoys the following properties: (i) it is decidable; (ii) it generalizes C; (iii) it keeps the same data complexity as C; and (iv) it can exploit any reasoner for query answering over C. Additionally, the paper proposes a simple and elegant syntactic condition that gives rise to the class Ward+ generalizing the well-known decidable classes Shy and Ward, and being included in Dyadic-Shy

    Effect of X-rays on the somatic chromosomes of the exotic fish, Tilapia mossambica

    Get PDF
    Male and female T. mossambica were x-rayed with 100 r and the meta-phase chromosome aberrations in their gill epithelia were studied at 13 different intervals against suitable control. The chromosomes of males appeared more radiosensitive than those of females. Among the diploid complement of 44 chromosomes, the individual type aberrations were non-random in both sexes. The longest pair of chromosomes, taken as the marker pair, was found very highly radio-sensitive, while the remaining 21 pairs as non-markers were somewhat resistant to x-radiation when the observed and the expected numbers were subjected to statistical analysis. The break in the marker chromosome was also non-randomly distributed as the distal half had a significantly large number of breaks

    Derivation of an integral of Boros and Moll via convolution of Student t-densities

    Full text link
    We show that the evaluation of an integral considered by Boros and Moll is a special case of a convolution result about Student t-densities obtained by the authors in 2008

    Confined optical phonon modes in polar tetrapod nanocrystals detected by resonant inelastic light scattering

    Full text link
    We investigated CdTe nanocrystal tetrapods of different sizes by resonant inelastic light scattering at room temperature and under cryogenic conditions. We observe a strongly resonant behavior of the phonon scattering with the excitonic structure of the tetrapods. Under resonant conditions we detect a set of phonon modes that can be understood as confined longitudinal-optical phonons, surface-optical phonons, and transverse-optical phonons in a nanowire picture.Comment: 12 pages, 4 figure

    Single-mode tuneable laser operation of hybrid microcavities based on CdSe/CdS core/shell colloidal nanorods on silica microspheres

    No full text
    Colloidal core/shell semiconductor nanonorystals have generated a great deal of interest as gain media in recent years due to a number of salient properties originating from their small size and the associated quantum confinement [1]. These include low-threshold and temperature-insensitive lasing, reduced trapping of excited carriers, and the possibility to alleviate non-radiative Auger recombination by engineering the wavefunction distributions of the electrons, and holes within their volume. Here, single-mode, tuneable operation of fiber-coupled hybrid lasers based on colloidal CdSe/CdS core/shell nanorods on silica microspheres is reported

    Boussinesq Solitary-Wave as a Multiple-Time Solution of the Korteweg-de Vries Hierarchy

    Full text link
    We study the Boussinesq equation from the point of view of a multiple-time reductive perturbation method. As a consequence of the elimination of the secular producing terms through the use of the Korteweg--de Vries hierarchy, we show that the solitary--wave of the Boussinesq equation is a solitary--wave satisfying simultaneously all equations of the Korteweg--de Vries hierarchy, each one in an appropriate slow time variable.Comment: 12 pages, RevTex (to appear in J. Math Phys.
    corecore