894 research outputs found

    AIDS-An International Perspective

    Get PDF

    Protoplanetary Disk Masses in the Young NGC 2024 Cluster

    Get PDF
    We present the results from a Submillimeter Array survey of the 887 micron continuum emission from the protoplanetary disks around 95 young stars in the young cluster NGC 2024. Emission was detected from 22 infrared sources, with flux densities from ~5 to 330 mJy; upper limits (at 3sigma) for the other 73 sources range from 3 to 24 mJy. For standard assumptions, the corresponding disk masses range from ~0.003 to 0.2Msolar, with upper limits at 0.002--0.01Msolar. The NGC 2024 sample has a slightly more populated tail at the high end of its disk mass distribution compared to other clusters, but without more information on the nature of the sample hosts it remains unclear if this difference is statistically significant or a superficial selection effect. Unlike in the Orion Trapezium, there is no evidence for a disk mass dependence on the (projected) separation from the massive star IRS2b in the NGC 2024 cluster. We suggest that this is due to either the cluster youth or a comparatively weaker photoionizing radiation field.Comment: ApJ, in pres

    Holocene Vegetation, Climate, and Carbon History on Western Kodiak Island, Alaska

    Get PDF
    At Phalarope Pond, western Kodiak Island, a multidisciplinary study using pollen and spores, macrofossils, stable isotopes, and carbon accumulation provides the Holocene vegetation and climate history following the deglaciation that began over 16,000 cal years ago (yr BP) [years Before Present, as calibrated from 1950]. Following a cold and dry Younger Dryas, a warm and wet early Holocene was characterized by abundant ferns in a sedge tundra environment with maximum carbon accumulation, similar to high latitude peatlands globally. About 8,700 cal yr BP sedge and ferns declined and climate remained warm as drier conditions prevailed, limiting carbon sequestration. The abrupt shift in D/H (Deuterium/Hydrogen) isotopes of about 60 percent indicates a shift to cooler conditions or a more distal moisture source. Neoglaciation beginning about 3,700 cal yr BP is evident from increases in Artemisia, Empetrum and Betula, signifying cooler conditions, while Alnus declines, paralleling regional trends

    ALMA Observations of Asymmetric Molecular Gas Emission from a Protoplanetary Disk in the Orion Nebula

    Full text link
    We present Atacama Large Millimeter/submillimeter Array (ALMA) observations of molecular line emission from d216-0939, one of the largest and most massive protoplanetary disks in the Orion Nebula Cluster (ONC). We model the spectrally resolved HCO+^+ (4--3), CO (3--2), and HCN (4--3) lines observed at 0\farcs5 resolution to fit the temperature and density structure of the disk. We also weakly detect and spectrally resolve the CS (7--6) line but do not model it. The abundances we derive for CO and HCO+^+ are generally consistent with expected values from chemical modeling of protoplanetary disks, while the HCN abundance is higher than expected. We dynamically measure the mass of the central star to be 2.17±0.07 M⊙2.17\pm0.07\,M_\odot which is inconsistent with the previously determined spectral type of K5. We also report the detection of a spatially unresolved high-velocity blue-shifted excess emission feature with a measurable positional offset from the central star, consistent with a Keplerian orbit at 60±20 au60\pm20\,\mathrm{au}. Using the integrated flux of the feature in HCO+^+ (4--3), we estimate the total H2_2 gas mass of this feature to be at least 1.8−8 MJupiter1.8-8\,M_\mathrm{Jupiter}, depending on the assumed temperature. The feature is due to a local temperature and/or density enhancement consistent with either a hydrodynamic vortex or the expected signature of the envelope of a forming protoplanet within the disk.Comment: 19 pages, 12 figures, accepted for publication in A

    Immersive, interactive, web-enabled computer simulation as a trigger for learning: The Next Generation of Problem-based Learning in Educational Leadership

    Get PDF
    Abstract from ERIC: This paper describes the use of advanced computer technology in an innovative educational leadership program. This program integrates full-motion video scenarios that simulate the leadership challenges typically faced by principals over the course of a full school year. These scenarios require decisions that are then coupled to consequences and scored in the background to create a profile of learner strengths and needs. Because the content has been filmed in an operating school and because of the unique choice-consequence sequences, the immersive and interactive simulation triggers more potent learning than is possible with either previous paper-and-pencil or discussion-based techniques. The scenarios are embedded in a Web-enabled framework that facilitates the provision of individualized feedback tailored to the specific choices made by the learner, and supports the collection of multiple metrics that relate to the performance of the learner and the learning framework itself. Project Authentic Learning for Leaders (ALL) demonstrates the future of teaching and learning in either hybrid (face-to-face instruction plus digital teaching and learning) or in individual anywhere, anytime learning. (Contains 5 figures.

    ALMA Observations of the Largest Proto-Planetary Disk in the Orion Nebula, 114-426: A CO Silhouette

    Get PDF
    We present ALMA observations of the largest protoplanetary disk in the Orion Nebula, 114-426. Detectable 345 GHz (856 micron) dust continuum is produced only in the 350 AU central region of the ~1000 AU diameter silhouette seen against the bright H-alpha background in HST images. Assuming optically thin dust emission at 345 GHz, a gas-to-dust ratio of 100, and a grain temperature of 20 K, the disk gas-mass is estimated to be 3.1 +/- 0.6 Jupiter masses. If most solids and ices have have been incorporated into large grains, however, this value is a lower limit. The disk is not detected in dense-gas tracers such as HCO+ J=4-3, HCN J=4-3, or CS =7-6. These results may indicate that the 114-426 disk is evolved and depleted in some light organic compounds found in molecular clouds. The CO J=3-2 line is seen in absorption against the bright 50 to 80 K background of the Orion A molecular cloud over the full spatial extent and a little beyond the dust continuum emission. The CO absorption reaches a depth of 27 K below the background CO emission at VLSR ~6.7 km/s about 0.52 arcseconds (210 AU) northeast and 12 K below the background CO emission at VLSR ~ 9.7 km/s about 0.34 arcseconds (140 AU) southwest of the suspected location of the central star, implying that the embedded star has a mass less than 1 Solar mass .Comment: 20 pages, 4 figure

    ALMA Observations of the Orion Proplyds

    Get PDF
    We present ALMA observations of protoplanetary disks ("proplyds") in the Orion Nebula Cluster. We imaged 5 individual fields at 856um containing 22 HST-identified proplyds and detected 21 of them. Eight of those disks were detected for the first time at submillimeter wavelengths, including the most prominent, well-known proplyd in the entire Orion Nebula, 114-426. Thermal dust emission in excess of any free-free component was measured in all but one of the detected disks, and ranged between 1-163 mJy, with resulting disk masses of 0.3-79 Mjup. An additional 26 stars with no prior evidence of associated disks in HST observations were also imaged within the 5 fields, but only 2 were detected. The disk mass upper limits for the undetected targets, which include OB stars, theta1Ori C and theta1Ori F, range from 0.1-0.6 Mjup. Combining these ALMA data with previous SMA observations, we find a lack of massive (>3 Mjup) disks in the extreme-UV dominated region of Orion, within 0.03 pc of O-star theta1Ori C. At larger separations from theta1Ori C, in the far-UV dominated region, there is a wide range of disk masses, similar to what is found in low-mass star forming regions. Taken together, these results suggest that a rapid dissipation of disk masses likely inhibits potential planet formation in the extreme-UV dominated regions of OB associations, but leaves disks in the far-UV dominated regions relatively unaffected.Comment: ApJ, in pres

    Masses and Mixings in a Grand Unified Toy Model

    Full text link
    The generation of the fermion mass hierarchy in the standard model of particle physics is a long-standing puzzle. The recent discoveries from neutrino physics suggests that the mixing in the lepton sector is large compared to the quark mixings. To understand this asymmetry between the quark and lepton mixings is an important aim for particle physics. In this regard, two promising approaches from the theoretical side are grand unified theories and family symmetries. In this note we try to understand certain general features of grand unified theories with Abelian family symmetries by taking the simplest SU(5) grand unified theory as a prototype. We construct an SU(5) toy model with U(1)F⊗Z2′⊗Z2′′⊗Z2′′′U(1)_F \otimes Z'_2\otimes Z''_2 \otimes Z'''_2 family symmetry that, in a natural way, duplicates the observed mass hierarchy and mixing matrices to lowest approximation. The system for generating the mass hierarchy is through a Froggatt-Nielsen type mechanism. One idea that we use in the model is that the quark and charged lepton sectors are hierarchical with small mixing angles while the light neutrino sector is democratic with larger mixing angles. We also discuss some of the difficulties in incorporating finer details into the model without making further assumptions or adding a large scalar sector.Comment: 21 pages, 2 figures, RevTeX, v2: references updated and typos corrected, v3: updated top quark mass, comments on MiniBooNE result, and typos correcte

    The O(N) Model at Finite Temperature: Renormalization of the Gap Equations in Hartree and Large-N Approximation

    Get PDF
    The temperature dependence of the sigma meson and pion masses is studied in the framework of the O(N) model. The Cornwall-Jackiw-Tomboulis formalism is applied to derive gap equations for the masses in the Hartree and large-N approximations. Renormalization of the gap equations is carried out within the cut-off and counter-term renormalization schemes. A consistent renormalization of the gap equations within the cut-off scheme is found to be possible only in the large-N approximation and for a finite value of the cut-off. On the other hand, the counter-term scheme allows for a consistent renormalization of both the large-N and Hartree approximations. In these approximations, the meson masses at a given nonzero temperature depend in general on the choice of the cut-off or renormalization scale. As an application, we also discuss the in-medium on-shell decay widths for sigma mesons and pions at rest.Comment: 21 pages, 6 figures, typos corrected and refs. added, accepted in Journal of Physics
    • …
    corecore