196 research outputs found

    Interferometric imaging with LOFAR remote baselines of the fine structures of a solar type-IIIb radio burst

    Get PDF
    Context. Solar radio bursts originate mainly from high energy electrons accelerated in solar eruptions like solar flares, jets, and coronal mass ejections. A sub-category of solar radio bursts with short time duration may be used as a proxy to understand wave generation and propagation within the corona.Aims. Complete case studies of the source size, position, and kinematics of short term bursts are very rare due to instrumental limitations. A comprehensive multi-frequency spectroscopic and imaging study was carried out of a clear example of a solar type IIIb-III pair.Methods. In this work, the source of the radio burst was imaged with the interferometric mode, using the remote baselines of the LOw Frequency ARray (LOFAR). A detailed analysis of the fine structures in the spectrum and of the radio source motion with imaging was conducted.Results. The study shows how the fundamental and harmonic components have a significantly different source motion. The apparent source of the fundamental emission at 26.56 MHz displaces away from the solar disk center at about four times the speed of light, while the apparent source of the harmonic emission at the same frequency shows a speed of <0.02 c. The source size of the harmonic emission observed in this case is smaller than that in previous studies, indicating the importance of the use of remote baselines.Peer reviewe

    Quantum measurement in a family of hidden-variable theories

    Get PDF
    The measurement process for hidden-configuration formulations of quantum mechanics is analysed. It is shown how a satisfactory description of quantum measurement can be given in this framework. The unified treatment of hidden-configuration theories, including Bohmian mechanics and Nelson's stochastic mechanics, helps in understanding the true reasons why the problem of quantum measurement can succesfully be solved within such theories.Comment: 16 pages, LaTeX; all special macros are included in the file; a figure is there, but it is processed by LaTe

    Exploring the Circular Polarisation of Low-Frequency Solar Radio Bursts with LOFAR

    Get PDF
    The Sun is an active star that often produces numerous bursts of electromagnetic radiation at radio wavelengths. Low frequency radio bursts have recently been brought back to light with the advancement of novel radio interferometers. However, their polarisation properties have not yet been explored in detail, especially with the Low Frequency Array (LOFAR), due to difficulties in calibrating the data and accounting for instrumental leakage. Here, using a unique method to correct the polarisation observations, we explore the circular polarisation of different sub-types of solar type III radio bursts and a type I noise storm observed with LOFAR, which occurred during March-April 2019. We analysed six individual radio bursts from two different dates. We present the first Stokes V low frequency images of the Sun with LOFAR in tied-array mode observations. We find that the degree of circular polarisation for each of the selected bursts increases with frequency for fundamental emission, while this trend is either not clear or absent for harmonic emission. The type III bursts studied, that are part of a long-lasting type III storm, can have different senses of circular polarisation, occur at different locations and have different propagation directions. This indicates that the type III bursts forming a classical type III storm do not necessarily have a common origin, but instead they indicate the existence of multiple, possibly unrelated acceleration processes originating from solar minimum active regions.Peer reviewe

    Coronal Conditions for the Occurrence of Type II Radio Bursts

    Get PDF
    Type II radio bursts are generally observed in association with flare-generated or coronal-mass-ejection-driven shock waves. The exact shock and coronal conditions necessary for the production of type II radio emission are still under debate. Shock waves are important for the acceleration of electrons necessary for the generation of the radio emission. Additionally, the shock geometry and closed field line topology, e.g., quasi-perpendicular shock regions or shocks interacting with streamers, play an important role for the production of the emission. In this study we perform a 3D reconstruction and modeling of a shock wave observed during the 2014 November 5 solar event. We determine the spatial and temporal evolution of the shock properties and examine the conditions responsible for the generation and evolution of type II radio emission. Our results suggest that the formation and evolution of a strong, supercritical, quasi-perpendicular shock wave interacting with a coronal streamer were responsible for producing type II radio emission. We find that the shock wave is subcritical before and supercritical after the start of the type II emission. The shock geometry is mostly quasi-perpendicular throughout the event. Our analysis shows that the radio emission is produced in regions where the supercritical shock develops with an oblique to quasi-perpendicular geometry

    LOFAR tied-array imaging of Type III solar radio bursts

    Get PDF
    Context. The Sun is an active source of radio emission which is often associated with energetic phenomena such as solar flares and coronal mass ejections (CMEs). At low radio frequencies (< 100 MHz), the Sun has not been imaged extensively because of

    Mesoscopic superpositions of vibronic collective states of N trapped ions

    Get PDF
    We propose a scalable procedure to generate entangled superpositions of motional coherent states and electronic states in N trapped ions. Beyond their fundamental importance, these states may be of interest for quantum information processing and may be used in experimental studies of decoherence.Comment: Final version, as published in Physical Review Letters. See also further developments and applications in quant-ph/020207

    The LOFAR long baseline snapshot calibrator survey

    Get PDF
    Aims. An efficient means of locating calibrator sources for international LOw Frequency ARray (LOFAR) is developed and used to determine the average density of usable calibrator sources on the sky for subarcsecond observations at 140 MHz. Methods. We used the multi-beaming capability of LOFAR to conduct a fast and computationally inexpensive survey with the full international LOFAR array. Sources were preselected on the basis of 325 MHz arcminute-scale flux density using existing catalogues. By observing 30 different sources in each of the 12 sets of pointings per hour, we were able to inspect 630 sources in two hours to determine if they possess a sufficiently bright compact component to be usable as LOFAR delay calibrators. Results. More than 40% of the observed sources are detected on multiple baselines between international stations and 86 are classified as satisfactory calibrators. We show that a flat low-frequency spectrum (from 74 to 325 MHz) is the best predictor of compactness at 140 MHz. We extrapolate from our sample to show that the sky density of calibrators that are sufficiently bright to calibrate dispersive and non-dispersive delays for the international LOFAR using existing methods is 1.0 per square degree. Conclusions. The observed density of satisfactory delay calibrator sources means that observations with international LOFAR should be possible at virtually any point in the sky provided that a fast and efficient search, using the methodology described here, is conducted prior to the observation to identify the best calibrator
    • …
    corecore