37,035 research outputs found
Modelling repeated epidemics with general infection kernels
An integral equation approach is taken to explore the characteristics of
a general infectious disease in a homogeneous population. It is shown that
the final size of the epidemic depends on the basic reproduction ratio for
the infection and the initial number of susceptibles. A discrete map for the
susceptible population from epidemic generation to epidemic generation is
formed to consider the long term behaviour of the disease in a population of
constant size
The design of supercritical wings by the use of three-dimensional transonic theory
A procedure was developed for the design of transonic wings by the iterative use of three dimensional, inviscid, transonic analysis methods. The procedure was based on simple principles of supersonic flow and provided the designer with a set of guidelines for the systematic alteration of wing profile shapes to achieve some desired pressure distribution. The method was generally applicable to wing design at conditions involving a large region of supercriterical flow. To illustrate the method, it was applied to the design of a wing for a supercritical maneuvering fighter that operates at high lift and transonic Mach number. The wing profiles were altered to produce a large region of supercritical flow which was terminated by a weak shock wave. The spanwise variation of drag of this wing and some principles for selecting the streamwise pressure distribution are also discussed
Theoretical estimation of the transonic aerodynamic characteristics of a supercritical-wing transport model with trailing-edge controls
A method for rapidly estimating the overall forces and moments at supercritical speeds, below drag divergence, of transport configurations with supercritical wings is presented. The method was also used for estimating the rolling moments due to the deflection of wing trailing-edge controls. This analysis was based on a vortex-lattice technique modified to approximate the effects of wing thickness and boundary-layer induced camber. Comparisons between the results of this method and experiment indicate reasonably good correlation of the lift, pitching moment, and rolling moment. The method required much less storage and run time to compute solutions over an angle-of-attack range than presently available transonic nonlinear methods require for a single angle-of-attack solution
Quasiclassical Coarse Graining and Thermodynamic Entropy
Our everyday descriptions of the universe are highly coarse-grained,
following only a tiny fraction of the variables necessary for a perfectly
fine-grained description. Coarse graining in classical physics is made natural
by our limited powers of observation and computation. But in the modern quantum
mechanics of closed systems, some measure of coarse graining is inescapable
because there are no non-trivial, probabilistic, fine-grained descriptions.
This essay explores the consequences of that fact. Quantum theory allows for
various coarse-grained descriptions some of which are mutually incompatible.
For most purposes, however, we are interested in the small subset of
``quasiclassical descriptions'' defined by ranges of values of averages over
small volumes of densities of conserved quantities such as energy and momentum
and approximately conserved quantities such as baryon number. The
near-conservation of these quasiclassical quantities results in approximate
decoherence, predictability, and local equilibrium, leading to closed sets of
equations of motion. In any description, information is sacrificed through the
coarse graining that yields decoherence and gives rise to probabilities for
histories. In quasiclassical descriptions, further information is sacrificed in
exhibiting the emergent regularities summarized by classical equations of
motion. An appropriate entropy measures the loss of information. For a
``quasiclassical realm'' this is connected with the usual thermodynamic entropy
as obtained from statistical mechanics. It was low for the initial state of our
universe and has been increasing since.Comment: 17 pages, 0 figures, revtex4, Dedicated to Rafael Sorkin on his 60th
birthday, minor correction
Accelerated/abbreviated test methods of the low-cost silicon solar array project. Study 4, task 3: Encapsulation
Methods of accelerated and abbreviated testing were developed and applied to solar cell encapsulants. These encapsulants must provide protection for as long as 20 years outdoors at different locations within the United States. Consequently, encapsulants were exposed for increasing periods of time to the inherent climatic variables of temperature, humidity, and solar flux. Property changes in the encapsulants were observed. The goal was to predict long term behavior of encapsulants based upon experimental data obtained over relatively short test periods
Accelerated/abbreviated test methods, study 4 of task 3 (encapsulation) of the low-cost silicon solar array project
Inherent weatherability is controlled by the three weather factors common to all exposure sites: insolation, temperature, and humidity. Emphasis was focused on the transparent encapsulant portion of miniature solar cell arrays by eliminating weathering effects on the substrate and circuitry (which are also parts of the encapsulant system). The most extensive data were for yellowing, which were measured conveniently and precisely. Considerable data also were obtained on tensile strength. Changes in these two properties after outdoor exposure were predicted very well from accelerated exposure data
Recommended from our members
Supporting Computer-supported collaborative work (CSCW) in conceptual design
In order to gain a better understanding of online conceptual collaborative design processes this paper investigates how student designers make use of a shared virtual synchronous environment when engaged in conceptual design. The software enables users to talk to each other and share sketches when they are remotely located. The paper describes a novel methodology for observing and analysing collaborative design processes by adapting the concepts of grounded theory. Rather than concentrating on narrow aspects of the final artefacts, emerging “themes” are generated that provide a broader picture of collaborative design process and context descriptions. Findings on the themes of “grounding – mutual understanding” and “support creativity” complement findings from other research, while important themes associated with “near-synchrony” have not been emphasised in other research. From the study, a series of design recommendations are made for the development of tools to support online computer-supported collaborative work in design using a shared virtual environment
Decoherent Histories Quantum Mechanics with One 'Real' Fine-Grained History
Decoherent histories quantum theory is reformulated with the assumption that
there is one "real" fine-grained history, specified in a preferred complete set
of sum-over-histories variables. This real history is described by embedding it
in an ensemble of comparable imagined fine-grained histories, not unlike the
familiar ensemble of statistical mechanics. These histories are assigned
extended probabilities, which can sometimes be negative or greater than one. As
we will show, this construction implies that the real history is not completely
accessible to experimental or other observational discovery. However,
sufficiently and appropriately coarse-grained sets of alternative histories
have standard probabilities providing information about the real fine-grained
history that can be compared with observation. We recover the probabilities of
decoherent histories quantum mechanics for sets of histories that are recorded
and therefore decohere. Quantum mechanics can be viewed as a classical
stochastic theory of histories with extended probabilities and a well-defined
notion of reality common to all decoherent sets of alternative coarse-grained
histories.Comment: 11 pages, one figure, expanded discussion and acknowledgment
- …