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Modelling repeated epidemics with

general infection kernels

J. Mann & M. Roberts

Institute of Information & Mathematical Sciences
Massey University at Albany, Auckland, New Zealand.

An integral equation approach is taken to explore the characteristics of
a general infectious disease in a homogeneous population. It is shown that
the final size of the epidemic depends on the basic reproduction ratio for
the infection and the initial number of susceptibles. A discrete map for the
susceptible population from epidemic generation to epidemic generation is
formed to consider the long term behaviour of the disease in a population of
constant size.

1 Introduction

Consider a population of constant size that we can split into three distinct classes
in relation to an infection. Let S(t) be the number of people susceptible to the
infection, I(t) be the number infected and R(t) be the number removed from the
infection (either through immunity or death). Susceptibles become infected at a
rate λ resulting from contact with infectives. Contact here is very loosely defined,
as the amount of contact needed to become infected will depend on the infection
being modelled. Infectives then become part of the removed compartment at a
constant rate γ. As the population size is constant, we know that the change in the
population size is zero, that is:

dS

dt
+

dI

dt
+

dR

dt
= 0 (1)

The differential equation model used to describe this system is then:

dS

dt
= −βχ

SI

N
dI

dt
= βχ

SI

N
− αI

dR

dt
= αI (2)
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Where χ is the rate at which susceptibles contact other members of the population
and β is the probability of a susceptible becoming infected given contact with an
infected member of the population. We have assumed that the population size is
constant, that is: S + I + R = N , so it can be seen that one of the above equations
is redundant.

A differential equation approach has been used for numerous mathematical mod-
els, and there is a large amount of information available for the analysis of such
systems. However, with constant contact parameters, the amount of time spend in
each compartment by members of the population is exponentially distributed - this
does not fit actual data. So we turn to a slightly different way of constructing a
model with the use of integral equations.

Using integral equations to model an infection is more intuitive than a differential
equations approach, and will match the actual data more closely. However, the down
side is, there is not a lot of information published relating to the analysis of such
systems.

2 Integral Model in One Dimension

Before we introduce the integral equation method, we must first define some terms
and relations that will be used throughout the work.

The probability of a susceptible becoming infected depends on their contact with
an infective and the probability of infection given this contact, which depends on
the time since the infective was itself infected. If we let p(τ) be the probability of
infection and contact, and χ(τ) be the contact rate with an infective, where τ is the
time since the infective was initially infected, then:

A(τ) = p(τ)χ(τ) (3)

We can then think of A(τ) as representing the probability of contact and infection
with an infective at infection time τ .

To see if an infection will persist within a population, we consider the basic
reproduction ratio, represented by R0, of the epidemic. The basic reproduction
ratio is the number of secondary cases that arise from a primary case in a susceptible
population (Diekmann & Heesterbeek 2000). So the critical value of R0 is one. If
R0 < 1 then the epidemic will not persist in the population, and the number of
infectives will decrease. If R0 > 1 then the epidemic will continue through the
population, and the number that have been infected will increase while the number
of susceptibles will decrease. We can see that R0 will depend on the population size,
the contact rates and the probability of infection, hence:

R0 = S(0)

∫ ∞

0

A(τ)dτ (4)

The incidence of infection i(t) is the number of new cases per unit time. So we
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see that it will be equal to the rate of change of the susceptible population (as we
have ignored changes in the susceptible population due to other causes).

At time t, the number of new cases of the infection depends on the contacts
between susceptibles and infectives - those who were infected themselves before
time t. So we have:

i(t) = i0δ(t) + S(t)

∫ t

0

A(τ)i(t− τ)dτ (5)

where the i0δ(t) accounts for the initial introduction of the infection into the popu-
lation and δ(t) is the Dirac delta function.

We may also rewrite this in terms of the change in the susceptible population:

−dS(t)

dt
= i0δ(t)− S(t)

∫ t

0

A(τ)
dS(t)

dt
(t− τ)dτ (6)

The number of infectives can be modelled by an exponential during the initial
phases of infection. So we let

−dS

dt
= i(t) ≈ kert (7)

for some positive constant r, which we call the initial growth rate of the infection.
Substituting in equation (6):

kert = i0δ(t) + S(t)k

∫ t

0

A(τ)er(t−τ)dτ (8)

As we are examining the initial growth of the infection, we do not need to include
the initial introduction of the infection into our population; hence we can omit the
i0δ term. We also set the size of the susceptible population equal to its initial value,
S(t) ≡ S(0)1. So we solve:

1 = S(0)

∫ t

0

A(τ)e−rτdτ (9)

It is shown in Diekmann and Heesterbeek (2000), that there is a unique real r
that solves equation (9). Note that equation (9) is similar to our equation for the
basic reproduction ratio (equation (4)). The correlation between the two lead to
two important facts: r > 1 if and only if the basic reproduction ratio is greater than
one, and r < 1 if and only if the basic reproduction ratio is less than one. That is,
we only have initial growth of the infection if we have an epidemic.

We may solve equation (9) to find r in two ways: by using normal integration
techniques and by using the method of Laplace transforms. To solve this equation

1S(t) � i0, and so we let S(0+) = S(0−). i0 will usually be assumed to be equal to one, i.e.
there will be one initial case to introduce the infection into the susceptible population.
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without using Laplace transforms, we let t → ∞ in the integral, as we want to
include all contacts between susceptibles and infectives. The integral then becomes:

1 = S(0)

∫ ∞

0

A(τ)e−rτdτ (10)

Which we may solve either analytically or numerically for r.
To use the method of Laplace Transforms, we start from equation (5) and approx-

imate S(t) ≡ S(0), as we assume that the entire population is initially susceptible
to the infection. From this we gain:

i(t) = i0δ(t) + S(0)

∫ t

0

A(τ)i(t− τ)dτ (11)

Then taking the Laplace transform, and using the convolution product:

i(s) = i0 + S(0)A(s)i(s)

=
i0

1− S(0)A(s)
(12)

(the over bar represents the Laplace transform.) The initial growth rate is taken to
be the real part of the value s with the largest real part. Both the Laplace transform
method and the normal integration techniques yield the same solution for the initial
growth rate.

To calculate the final size of the epidemic, we must calculate how many people
were infected, i.e. S(0)−S(∞). To calculate the value of S(∞) for a small epidemic
(where we assume that the number of susceptibles is constant, S(t) ≡ S(0)), we
use the method of Laplace transforms on the equation for the incidence of infection
(equation (5)). We know that:∫ ∞

0

i(t)dt = lim
s→0

∫ ∞

0

i(t)e−stdt = lim
s→0

i(s) (13)

and

i(t) = −dS(t)

dt
(14)

Combining the above two equations:

−
∫ ∞

0

dS(t)

dt
dt = lim

s→0
i(s) (15)

Calculating this integral and substituting in the result from equation (12) gives:

S(0)− S(∞) = lim
s→0

i0
1− S(0)

∫∞
0

A(τ)e−sτdτ
(16)
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Evaluating the limit and using the definition of the basic reproduction ratio we have
the final size equation for a small epidemic:

S(0)− S(∞) =
i0

1−R0

(17)

To calculate the final size equation for large epidemics we cannot assume that
the susceptible population remains constant. We let t > ∞ in equation (6) and
neglect the initial introduction of the infection into our population, hence:

dS(t)

dt
= S(t)

∫ ∞

0

A(τ)

[
dS(t− τ)

dt

]
dτ (18)

Integrating and rearranging then leads to:

log

(
S(∞)

S(0)

)
=

(
S(∞)

S(0)
− 1

)
R0 (19)
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Figure 1: Sample final size curves, intersection of lines gives S(∞), where S(0) =
1000 and R0 = 3

Figure 1 shows the two curves y = S(∞)
S(0)

and y = e(
S(∞)
S(0)

−1)R0 plotted against

the same axis. The two curves intercept when S(0) = S(∞) (corresponding to no
epidemic) and at a second point where S(∞) < S(0) (corresponding to an epidemic).
Given the values for S(0) and R0 we can solve equation (19) for S(∞) and calculate
the final size equation.
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3 Repeated Epidemics

When an infective is introduced into a population, an epidemic may or may not
occur depending on the number of people in the population who are susceptible to
the infection. If an epidemic does occur, the next natural question is, will there be
another epidemic in the future?

We can develop a discrete map for the susceptible population from epidemic
generation to epidemic generation2. We already know that the final size of the
epidemic can be calculated when the initial population and basic reproduction ratio
are known.

We assume that the entire population is initially susceptible, then let an epidemic
occur and calculate the number of susceptibles left after the epidemic (S(∞)). We
then let a proportion (θ) of these susceptibles remain in the population, and in-
troduce new susceptibles to keep the population size constant. By calculating the
basic reproduction ratio for this new population, we can tell if another epidemic will
occur. At the end of each epidemic, we assume that there are no infectives from the
previous epidemic present.

An example of this method would be children at a school. Suppose that all the
children are susceptible to an infection, and the reproduction ratio for this infection
is greater than one - then there will be an epidemic at the school. At the end of
the school year, a proportion of the children will leave the school and new students
will attend. We then see if another epidemic occurs. A “reshuffling” of susceptibles
will occur at the end of every epidemic, and then another epidemic may or may not
occur depending on the new reproduction ratio.

Initially we have S0,0 = N , that is, the susceptible population before the first
epidemic is just the entire population. The proportion of susceptibles is then x0 =
S0,0

N
= 1, and the basic reproduction ratio is R0 = N

∫∞
0

A(τ)dτ . If R0 < 1 then there
is no epidemic, and the proportion of susceptibles in the next epidemic population
will be:

x1 = 1− θ + θx0 (20)

therefore, we have x1 = 1. However, if R0 > 1 then there will be an epidemic and
we must solve the final size equation

log

(
z

x0

)
= R0

(
z

x0

− 1

)
(21)

where z = S∞,0

N
. For this case, we then replace x0 with z in equation (20) to calculate

the susceptible proportion for the next epidemic generation.

We can then iterate the process outlined above for subsequent epidemics. So in

2This idea initially came from Andreason (2003), although in his paper a new infection is
introduced in each generation.
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Figure 2: Cobweb plot given: R0 =, θ = and x0 = 1

general we have:

xn = 1− θ + θzn−1

Rn = xnR0 (22)

If R0 > 1 we have an epidemic, so we solve:

log

(
zn

xn

)
= xnR0

(
zn

xn

− 1

)
(23)

for zn. This has a unique solution3 zn 6= xn. If R0 < 1 then this is no epidemic, and
we set zn = xn.

The discrete map is:

xn+1 = f(xn) (24)

where

y =

{
1− θ + θzn if xn > 1

R0
, i.e. no epidemic

1− θ + θxn otherwise, i.e. no epidemic

and zn solves equation (23).
The cobweb plots shown demonstrate the convergence of repeated iteration of

the piecewise continuous function given in equation (3), when the entire population
is initially susceptible. On the “cobweb” curve, the straight line corresponds to
no epidemics, while the decreasing curve corresponds to epidemics. To answer our

3See Diekmann and Heesterbeek (2000) for a complete proof
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Figure 3: Cobweb plot given: R0 =, θ = and x0 = 1

original question, we need to calculate the fixed point of the cobweb plot and see if
it is stable or unstable.

We know that there is no epidemic when the basic reproduction ratio is less than
one for each epidemic generation, that is:

Rn = xnR0 < 1 (25)

So we see that the straight line spans 0 < xn < 1
R0

.
If we let the straight line part of the cobweb be g(x) = 1− θ + θx and the curved

part be the solution to

log

(
xn+1 − (1− θ)

θxn

)
= xnR0

(
xn+1 − (1− θ)

θxn

− 1

)
(26)

defined by the function xn+1 = f(xn), we have:

log

(
f(xn)− (1− θ)

θxn

)
= R0

(
f(xn)− (1− θ)

θ
− xn

)
(27)

Note that g(x) and the line y = x only intersect at x = 0 and x = 1, so a non-zero
steady state must lie at some value in the interval 1

R0
< X < 1.

To find the stability of the fixed point (from the cobweb plots it appears to be
stable), we find the derivative of f(x) from equation (27). We can utilise the fact
that at the fixed point f(X) = X, which gives us:

f ′(X) =
θ(1−R0X)(X − (1− θ))

X(θ −R0(X − (1− θ)))
(28)
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Figure 4: The top plot show the value of R0 at fixed points X, given θ. The second
plot shows the derivative of the nonlinear equation at fixed points X, given θ with
corresponding R0 values seen in the top plot.

We may also use equation (27) to find an implicit relationship between the fixed
point X and the basic reproduction ratio:

R0 =
θ

(1− θ)(1−X)
log

(
θX

X − (1− θ)

)
(29)

Recall that R0 and θ are known and we are solving for the fixed point X. We
know that the fixed point lies within the range ( 1

R0
, 1), using equation (29) we can

evaluate the reproduction ratio at every fixed point, and then use this information
to calculate equation (28). We have used this method to produce figure (4). This
first plot shows the value of R0 at varying fixed points X and selected values of θ.
The line X = 1

R0
has been added to emphasize the fact that the fixed point lies

in the range ( 1
R0

, 1). The second plot shows f ′(X) at varying fixed points X and
different values of θ.

From the numerical examples presented in figures (2 and 3), we would infer that
the fixed point is stable. We shall now present an analytical proof to show this.

We can find the values of f ′(X) at the end points X = 1
R0

and X = 1, using
asymptotic expansion and simple algebra (respectively), to gain

f ′(
1

R0

) = 0

f ′(1) = −θ (30)

To show that the fixed point is stable, we must first show |f ′(X)| < 1 within
our range of consideration, ( 1

R0
, 1), where R0 > 1. It can be shown that f ′(X) is
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continuous in our range (the functions singularity lies at R0 ≡ 1), and

X > 1− θ +
θ

R0

(31)

We need now only show that f ′(X) has no turning point over X ∈ ( 1
R0

, 1), i.e. f ′(X)

has no critical points over X ∈ ( 1
R0

, 1)

Proof. We have

f ′(X) =
θ(1−R0X)(X − (1− θ))

X(θ −R0(X − (1− θ)))
(32)

With some calculation is can be shown that

f ′′(X) =
θ(1− θ)(θ(1−R0) + R0X(X − 2) + R0)

X2(θ(R0 − 1) + R0(X − 1))2
(33)

A critical point must satisfy df ′(X)
dX

= 0, that is

R0X
2 − 2R0X + R0 + θ(1−R0) = 0 (34)

Solving the above quadratic for X < 1 yields

X = 1−

√
θ(R0 − 1)

R0

(35)

We have two possibilities:
If θ(R0−1)

R0
≥ 1, then from equation (35) X would be negative (or zero), and hence

not lie in our region of consideration.
If θ(R0−1)

R0
< 1 then X < 1− θ(R0−1)

R0
which contradicts equation (31).

Therefore, f ′(X) has no critical points over X ∈ ( 1
R0

, 1)

We have shown f ′(1) = −θ, f ′( 1
R0

) = 0, the singularity X = 1−θ+ R0

θ
in equation

(28) does not lie in the region we are considering ( 1
R0

< X < 1) and that f ′(X) does
not have any turning points within this range. So 0 ≥ f ′(X) ≥ −θ > −1, thus the
fixed point X that satisfies equation (28) is stable.

This means that there is an epidemic each and every year when an infection is
introduced into a fully susceptible population, when the basic reproduction ratio is
greater than one and the population size remains constant after each epidemic.

4 Discussion

Compartmental models using differential equations have been used to model many
infections, and there is a vast amount of information available on the analysis of
such systems. However, when constant parameters are used to model the dynam-
ics between the susceptible, infective and recovered populations, the time spent in
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each compartment is exponentially distributed among the members of the popula-
tion. This kind of assumption does not often model the data closely, so an integral
equation method has been developed.

We have shown methods to calculate the basic reproduction ratio, the initial
growth rate of an infection and the final size equation of an infection. Two methods
were presented for calculating the final size of an epidemic bases on the size of the
epidemic: for a small epidemic we approximate the susceptible population by the
initial number of susceptibles in the population, and for large epidemics we do not
assume the susceptible population is constant.

A discrete map was developed to look at the effect of an epidemic on the sus-
ceptible population from one epidemic generation to the next, and this was shown
to converge to a stable solution. This means that an epidemic occurs within the
population each and every year - which is a surprising result consider the similarity
of the cobweb map (figure 2 and 3) to the tent map that produces periodic orbits4.
This result has also been established by Boni (2004) for a the differential equation
model.

The integral method for calculating the basic reproduction ratio, the initial
growth rate and the final size equation can be extended into two dimensions, where
we consider the population to be split into two independent classes. Special cases
can also be considered to explore different types of mixing behavior within the total
population. To solve the two dimensional final size equation, a greater amount of
numerical computation is required than for the simple two dimension model, but
if certain mixing patterns are applied the two dimensional case will break down
to form a simple one dimensional problem. We can also incorporate the effect of
vaccination into the model, by changing the initial susceptible population after each
epidemic generation.

The work presented here has been submitted as part of a Masters of Information
Science thesis in 2003. This work was supported by a postgraduate scholarship in
industrial mathematics, from the New Zealand Institute for Mathematics and its
Applications.
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