10 research outputs found

    On the temperature of surfaces

    Get PDF
    The concept of the temperature of a surface is introduced from the viewpoint of the physical chemistry of surfaces. The surface, near surface and microlayer regions of the interface are defined. Most methods measure the temperature of the microlayer or at best the near surface region and may err in representing the surface temperature. Methods based on capillary ripples actually measure the surface temperature since surface tension (or surface tension tensor when a monolayer has been spread or absorbed at the interface) is the main restoring force that controls their propagation. Light scattering methods are described for determining the elevation of very small amplitude capillary waves through the computation of various correlation functions from which the surface tension can be estimated. Procedures for estimating the surface temperature are described

    Surface chemistry of liquid metals

    Get PDF
    The fundamental surface chemistry of the behavior of liquid metals spreading on a solid substrate is not at all well understood. Each of these questions involves knowing the details of the structure of interfaces and their dynamics. For example the structure of a monolayer of tin oxide on pure liquid tin is unknown. This is in contrast to the relatively large amount of data available on the structure of copper oxide monolayers on solid, pure copper. However, since liquid tin has a vapor pressure below 10(exp -10)torr for a reasonable temperature range above its melting point, it is possible to use the techniques of surface science to study the geometric, electronic and vibrational structures of these monolayers. In addition, certain techniques developed by surface chemists for the study of liquid systems can be applied to the ultra-high vacuum environment. In particular we have shown that light scattering spectroscopy can be used to study the surface tension tensor of these interfaces. The tin oxide layer in particular is very interesting in that the monolayer is rigid but admits of bending. Ellipsometric microscopy allows the visualization of monolayer thick films and show whether island formation occurs at various levels of dosing

    Domain Relaxation in Langmuir Films

    Get PDF
    We report on theoretical studies of molecularly thin Langmuir films on the surface of a quiescent subfluid and qualitatively compare the results to both new and previous experiments. The film covers the entire fluid surface, but domains of different phases are observed. In the absence of external forcing, the compact domains tend to relax to circles, driven by a line tension at the phase boundaries. When stretched (by a transient applied stagnation-point flow or by stirring), a compact domain elongates, creating a bola consisting of two roughly circular reservoirs connected by a thin tether. This shape will then relax slowly to the minimum-energy configuration of a circular domain. The tether is never observed to rupture, even when it is more than a hundred times as long as it is wide. We model these experiments by taking previous descriptions of the full hydrodynamics, identifying the dominant effects via dimensional analysis, and reducing the system to a more tractable form. The result is a free boundary problem for an inviscid Langmuir film whose motion is driven by the line tension of the domain and damped by the viscosity of the subfluid. Using this model we derive relaxation rates for perturbations of a uniform strip and a circular patch. We also derive a boundary integral formulation which allows an efficient numerical solution of the problem. Numerically this model replicates the formation of a bola and the subsequent relaxation observed in the experiments. Finally, we suggest physical properties of the system (such as line tension) that can be deduced by comparison of the theory and numerical simulations to the experiment. Two movies are available with the online version of the paper

    Hybrid Reflection-transmission Surface Light-scattering Instrument with Reduced Sensitivity to Surface Sloshing

    Get PDF
    A hybrid reflection-transmission surface light-scattering instrumental design is presented, examined theoretically, and tested experimentally. The purpose of the design is to reduce the sensitivity of the instrument to vibration in general and surface sloshing in particular while sacrificing Little performance. Traditional optical arrangements and two new optical configurations with varying trade-offs between slosh resistance and instrumental simplicity and accuracy are examined by use of Fourier optics methods. The most promising design was constructed and tested with acetone, ethanol, and water as subject fluids. The test involved backcalculation of the wave number of the capillary wave examined with the known physical parameters for the test fluids. The agreement of the computed wave number was +/-1.4%. (C) 1997 Optical Society of America

    A preview of a modular surface light scattering instrument with autotracking optics

    Get PDF
    NASA's Advanced Technology Development (ATD) program is sponsoring the development of a new generation of surface light scattering hardware. This instrument is designed to non-invasively measure the surface response function of liquids over a wide range of operating conditions while automatically compensating for a sloshing surface. The surface response function can be used to compute surface tension, properties of monolayers present, viscosity, surface tension gradient and surface temperature. The instrument uses optical and electronic building blocks developed for the laser light scattering program at NASA Lewis along with several unique surface light scattering components. The emphasis of this paper is the compensation for bulk surface motion (slosh). Some data processing background information is also included

    Interfacial Tension and Mechanism of Liquid–liquid Phase Separation in Aqueous Media

    No full text
    The organization of multiple subcellular compartments is controlled by liquid–liquid phase separation. Phase separation of this type occurs with the emergence of interfacial tension. Aqueous two-phase systems formed by two non-ionic polymers can be used to separate and analyze biological macromolecules, cells and viruses. Phase separation in these systems may serve as the simple model of phase separation in cells also occurring in aqueous media. To better understand liquid–liquid phase separation mechanisms, interfacial tension was measured in aqueous two-phase systems formed by dextran and polyethylene glycol and by polyethylene glycol and sodium sulfate in the presence of different additives. Interfacial tension values depend on differences between the solvent properties of the coexisting phases, estimated experimentally by parameters representing dipole–dipole, ion–dipole, ion–ion, and hydrogen bonding interactions. Based on both current and literature data, we propose a mechanism for phase separation in aqueous two-phase systems. This mechanism is based on the fundamental role of intermolecular forces. Although it remains to be confirmed, it is possible that these may underlie all liquid–liquid phase separation processes in biology
    corecore