22,504 research outputs found

    Suprathermal electron distributions in the solar transition region

    Full text link
    Suprathermal tails are a common feature of solar wind electron velocity distributions, and are expected in the solar corona. From the corona, suprathermal electrons can propagate through the steep temperature gradient of the transition region towards the chromosphere, and lead to non-Maxwellian electron velocity distribution functions (VDFs) with pronounced suprathermal tails. We calculate the evolution of a coronal electron distribution through the transition region in order to quantify the suprathermal electron population there. A kinetic model for electrons is used which is based on solving the Boltzmann-Vlasov equation for electrons including Coulomb collisions with both ions and electrons. Initial and chromospheric boundary conditions are Maxwellian VDFs with densities and temperatures based on a background fluid model. The coronal boundary condition has been adopted from earlier studies of suprathermal electron formation in coronal loops. The model results show the presence of strong suprathermal tails in transition region electron VDFs, starting at energies of a few 10 eV. Above electron energies of 600 eV, electrons can traverse the transition region essentially collision-free. The presence of strong suprathermal tails in transition region electron VDFs shows that the assumption of local thermodynamic equilibrium is not justified there. This has a significant impact on ionization dynamics, as is shown in a companion paper

    Reactor antineutrino spectra and their application to antineutrino-induced reactions. II

    Get PDF
    The antineutrino and electron spectra associated with various nuclear fuels are calculated. While there are substantial differences between the spectra of different uranium and plutonium isotopes, the dependence on the energy and flux of the fission-inducing neutrons is very weak. The resulting spectra can be used for the calculation of the antineutrino and electron spectra of an arbitrary nuclear reactor at various stages of its refueling cycle. The sources of uncertainties in the spectrum are identified and analyzed in detail. The exposure time dependence of the spectrum is also discussed. The averaged cross sections of the inverse neutron β decay, weak charged and neutral-current-induced deuteron disintegration, and the antineutrino-electron scattering are then evaluated using the resulting ν̅_e spectra. [RADIOACTIVITY, FISSION 235U, 238U, (^239)Pu, (^240)Pu, (^241)Pu, antineutrino and electron spectra calculated. σ for ν̅ induced reactions analyzed.

    The Symmetries of Nature

    Get PDF
    The study of the symmetries of nature has fascinated scientists for eons. The application of the formal mathematical description of symmetries during the last century has produced many breakthroughs in our understanding of the substructure of matter. In this talk, a number of these advances are discussed, and the important role that George Sudarshan played in their development is emphasize

    Symmetry Breaking Using Value Precedence

    Full text link
    We present a comprehensive study of the use of value precedence constraints to break value symmetry. We first give a simple encoding of value precedence into ternary constraints that is both efficient and effective at breaking symmetry. We then extend value precedence to deal with a number of generalizations like wreath value and partial interchangeability. We also show that value precedence is closely related to lexicographical ordering. Finally, we consider the interaction between value precedence and symmetry breaking constraints for variable symmetries.Comment: 17th European Conference on Artificial Intelligenc

    Conservation Laws and 2D Black Holes in Dilaton Gravity

    Full text link
    A very general class of Lagrangians which couple scalar fields to gravitation and matter in two spacetime dimensions is investigated. It is shown that a vector field exists along whose flow lines the stress-energy tensor is conserved, regardless of whether or not the equations of motion are satisfied or if any Killing vectors exist. Conditions necessary for the existence of Killing vectors are derived. A new set of 2D black hole solutions is obtained for one particular member within this class of Lagrangians. One such solution bears an interesting resemblance to the 2D string-theoretic black hole, yet contains markedly different thermodynamic properties.Comment: 11 pgs. WATPHYS-TH92/0

    New Types of Thermodynamics from (1+1)(1+1)-Dimensional Black Holes

    Full text link
    For normal thermodynamic systems superadditivity §\S, homogeneity \H and concavity \C of the entropy hold, whereas for (3+1)(3+1)-dimensional black holes the latter two properties are violated. We show that (1+1)(1+1)-dimensional black holes exhibit qualitatively new types of thermodynamic behaviour, discussed here for the first time, in which \C always holds, \H is always violated and §\S may or may not be violated, depending of the magnitude of the black hole mass. Hence it is now seen that neither superadditivity nor concavity encapsulate the meaning of the second law in all situations.Comment: WATPHYS-TH93/05, Latex, 10 pgs. 1 figure (available on request), to appear in Class. Quant. Gra

    Probabilistic Cross-Identification of Astronomical Sources

    Full text link
    We present a general probabilistic formalism for cross-identifying astronomical point sources in multiple observations. Our Bayesian approach, symmetric in all observations, is the foundation of a unified framework for object matching, where not only spatial information, but physical properties, such as colors, redshift and luminosity, can also be considered in a natural way. We provide a practical recipe to implement an efficient recursive algorithm to evaluate the Bayes factor over a set of catalogs with known circular errors in positions. This new methodology is crucial for studies leveraging the synergy of today's multi-wavelength observations and to enter the time-domain science of the upcoming survey telescopes.Comment: Accepted for publication in the Astrophysical Journal, 8 pages, 1 figure, emulateapj w/ apjfont

    Chaos in a Relativistic 3-body Self-Gravitating System

    Get PDF
    We consider the 3-body problem in relativistic lineal gravity and obtain an exact expression for its Hamiltonian and equations of motion. While general-relativistic effects yield more tightly-bound orbits of higher frequency compared to their non-relativistic counterparts, as energy increases we find in the equal-mass case no evidence for either global chaos or a breakdown from regular to chaotic motion, despite the high degree of non-linearity in the system. We find numerical evidence for a countably infinite class of non-chaotic orbits, yielding a fractal structure in the outer regions of the Poincare plot.Comment: 9 pages, LaTex, 3 figures, final version to appear in Phys. Rev. Let
    • …
    corecore