614 research outputs found

    Covariant Counterterms and Conserved Charges in Asymptotically Flat Spacetimes

    Get PDF
    Recent work has shown that the addition of an appropriate covariant boundary term to the gravitational action yields a well-defined variational principle for asymptotically flat spacetimes and thus leads to a natural definition of conserved quantities at spatial infinity. Here we connect such results to other formalisms by showing explicitly i) that for spacetime dimension d≄4d \ge 4 the canonical form of the above-mentioned covariant action is precisely the ADM action, with the familiar ADM boundary terms and ii) that for d=4d=4 the conserved quantities defined by counter-term methods agree precisely with the Ashtekar-Hansen conserved charges at spatial infinity.Comment: 27 pages; Dedicated to Rafael Sorkin on the occasion of his 60th birthday; v2 minor change

    Pyrrolo[2,3D]Pyrimidine Compounds

    Get PDF
    Described herein is pyrrolo{2,3-d}pyrimidine compounds, their use as Janus Kinase (JAK) inhibitors, pharmaceutical compositions containing this compounds, and methods for the preparation of these compounds

    Centerscope

    Full text link
    Centerscope, formerly Scope, was published by the Boston University Medical Center "to communicate the concern of the Medical Center for the development and maintenance of improved health care in contemporary society.

    Decoherence, the measurement problem, and interpretations of quantum mechanics

    Get PDF
    Environment-induced decoherence and superselection have been a subject of intensive research over the past two decades, yet their implications for the foundational problems of quantum mechanics, most notably the quantum measurement problem, have remained a matter of great controversy. This paper is intended to clarify key features of the decoherence program, including its more recent results, and to investigate their application and consequences in the context of the main interpretive approaches of quantum mechanics.Comment: 41 pages. Final published versio

    Geons with spin and charge

    Full text link
    We construct new geon-type black holes in D>3 dimensions for Einstein's theory coupled to gauge fields. A static nondegenerate vacuum black hole has a geon quotient provided the spatial section admits a suitable discrete isometry, and an antisymmetric tensor field of rank 2 or D-2 with a pure F^2 action can be included by an appropriate (and in most cases nontrivial) choice of the field strength bundle. We find rotating geons as quotients of the Myers-Perry(-AdS) solution when D is odd and not equal to 7. For other D we show that such rotating geons, if they exist at all, cannot be continuously deformed to zero angular momentum. With a negative cosmological constant, we construct geons with angular momenta on a torus at the infinity. As an example of a nonabelian gauge field, we show that the D=4 spherically symmetric SU(2) black hole admits a geon version with a trivial gauge bundle. Various generalisations, including both black-brane geons and Yang-Mills theories with Chern-Simons terms, are briefly discussed.Comment: 26 pages, 1 figure. LaTeX with amssymb, amsmath. (v2: References and a figure added.

    Relational Quantum Mechanics

    Full text link
    I suggest that the common unease with taking quantum mechanics as a fundamental description of nature (the "measurement problem") could derive from the use of an incorrect notion, as the unease with the Lorentz transformations before Einstein derived from the notion of observer-independent time. I suggest that this incorrect notion is the notion of observer-independent state of a system (or observer-independent values of physical quantities). I reformulate the problem of the "interpretation of quantum mechanics" as the problem of deriving the formalism from a few simple physical postulates. I consider a reformulation of quantum mechanics in terms of information theory. All systems are assumed to be equivalent, there is no observer-observed distinction, and the theory describes only the information that systems have about each other; nevertheless, the theory is complete.Comment: Substantially revised version. LaTeX fil

    Quantifying Entanglement Production of Quantum Operations

    Full text link
    The problem of entanglement produced by an arbitrary operator is formulated and a related measure of entanglement production is introduced. This measure of entanglement production satisfies all properties natural for such a characteristic. A particular case is the entanglement produced by a density operator or a density matrix. The suggested measure is valid for operations over pure states as well as over mixed states, for equilibrium as well as nonequilibrium processes. Systems of arbitrary nature can be treated, described either by field operators, spin operators, or any other kind of operators, which is realized by constructing generalized density matrices. The interplay between entanglement production and phase transitions in statistical systems is analysed by the examples of Bose-Einstein condensation, superconducting transition, and magnetic transitions. The relation between the measure of entanglement production and order indices is analysed.Comment: 20 pages, Revte

    Decoherence, einselection, and the quantum origins of the classical

    Full text link
    Decoherence is caused by the interaction with the environment. Environment monitors certain observables of the system, destroying interference between the pointer states corresponding to their eigenvalues. This leads to environment-induced superselection or einselection, a quantum process associated with selective loss of information. Einselected pointer states are stable. They can retain correlations with the rest of the Universe in spite of the environment. Einselection enforces classicality by imposing an effective ban on the vast majority of the Hilbert space, eliminating especially the flagrantly non-local "Schr\"odinger cat" states. Classical structure of phase space emerges from the quantum Hilbert space in the appropriate macroscopic limit: Combination of einselection with dynamics leads to the idealizations of a point and of a classical trajectory. In measurements, einselection replaces quantum entanglement between the apparatus and the measured system with the classical correlation.Comment: Final version of the review, with brutally compressed figures. Apart from the changes introduced in the editorial process the text is identical with that in the Rev. Mod. Phys. July issue. Also available from http://www.vjquantuminfo.or

    Elections and Ethnic Civil War

    Get PDF
    Existing research on how democratization may influence the risk of civil war tends to consider only changes in the overall level of democracy and rarely examines explicitly the postulated mechanisms relating democratization to incentives for violence. The authors argue that typically highlighted key mechanisms imply that elections should be especially likely to affect ethnic groups’ inclination to resort to violence. Distinguishing between types of conflict and the order of competitive elections, the authors find that ethnic civil wars are more likely to erupt after competitive elections, especially after first and second elections following periods of no polling. When disaggregating to the level of individual ethnic groups and conflicts over territory or government, the authors find some support for the notion that ethno-nationalist mobilization and sore-loser effects provoke postelectoral violence. More specifically, although large groups in general are more likely to engage in governmental conflicts, they are especially likely to do so after noncompetitive elections. Competitive elections, however, strongly reduce the risk of conflict. </jats:p
    • 

    corecore