42 research outputs found

    Engineering pressure retarded osmosis membrane bioreactor (PRO-MBR) for simultaneous water and energy recovery from municipal wastewater

    Get PDF
    Osmotic membrane bioreactors (OMBR) have gained increasing interest in wastewater treatment and reclamation due to their high product water quality and fouling resistance. However, high energy consumption (mostly by draw solution recovery) restricted the wider application of OMBR. Herein, we propose a novel pressure retarded osmosis membrane bioreactor (PRO-MBR) for improving the economic feasibility. In comparison with conventional FO-MBR, PRO-MBR exhibited similar excellent contaminants removal performance and comparable water flux. More importantly, a considerable amount of energy can be recovered by PRO-MBR (4.1 kWh/100 m2·d), as a result of which, 10.02% of the specific energy consumption (SEC) for water recovery was reduced as compared with FO-MBR (from 1.42 kWh/m3 to 1.28 kWh/m3). Membrane orientation largely determined the performance of PRO-MBR, higher power density was achieved in AL-DS orientation (peak value of 3.4 W/m2) than that in AL-FS orientation (peak value of 1.4 W/m2). However, PRO-MBR suffered more severe and complex membrane fouling when operated in AL-DS orientation, because the porous support layer was facing sludge mixed liquor. Further investigation revealed fouling was mostly reversible for PRO-MBR, it exhibited similar flux recoverability (92.4%) to that in FO-MBR (95.1%) after osmotic backwash. Nevertheless, flux decline due to membrane fouling is still a restricting factor to power generation of PRO-MBR, its power density was decreased by 38.2% in the first 60 min due to the formation of fouling. Overall, in perspective of technoeconomic feasibility, the PRO-MBR demonstrates better potential than FO-MBR in wastewater treatment and reclamation and deserves more research attention in the future.This work was supported by the National Natural Science Foundation of China [grant number 51978312]; the Six Major Talent Peaks of Jiangsu Province [grant number 2018-JNHB-014]; and the Program to Cultivate Middle-aged and Young Science Leaders of Colleges and Universities of Jiangsu Province

    Chang-wei-qing, a Chinese herbal formula, ameliorates colitis-associated tumour development via inhibiting NF-κB and STAT3 signalling pathway

    No full text
    Context: Chang-wei-qing (CWQ) is a Chinese herbal recipe with clinical efficacy. However, the molecular mechanism underlying its recognized therapeutic benefits against colorectal cancer is still elusive. Objective: To investigate the potential beneficial effects of CWQ in drug-induced colitis-associated cancer (CAC) model and its mechanistic involvements in this disease. Materials and methods: Colitis-associated cancer model was induced by azoxymethane (AOM) and dextran sulphate sodium (DSS). CWQ was administrated by gavage. Colon length and tumour size were determined after resection. The colitis was systematically scored. The microbiota and population of Faecalibacterium prausnitzii (F. prausnitzii) Hauduroy & Duncan was analysed by quantitative polymerase chain reaction (PCR). β-Glucuronidase, d-lactose and endotoxin were determined with commercially available kits. Pro-inflammatory cytokines were analysed in the colon tissues. Relative protein expressions were determined by Western blotting. Results: High concentration CWQ significantly restored the colon length, decreased tumour number and size (1.7 ± 0.6 vs. 2.8 ± 0.4 mm, p < 0.01) and reduced colitis score (11.8 ± 2.1 vs. 18.2 ± 2.3, p < 0.01). CWQ also suppressed expansion of F. prausnitzii population (0.029 ± 0.015% vs. 0.052 ± 0.019%, p < 0.01). CWQ greatly inhibited the activity of β-glucuronidase and leakage of d-lactose and endotoxin. Meanwhile, the pro-inflammatory cytokines were remarkably decreased in CAC mice in response to CWQ treatment. We further demonstrated that CWQ inhibited both NF-κB and STAT3 signalling. Conclusions: We for the first time demonstrated the antitumour properties of CWQ in vivo via inhibiting NF-κB and STAT3 signalling

    Differential expression, distinct localization and opposite effect on Golgi structure and cell differentiation by a novel splice variant of human PRMT5

    Get PDF
    © 2015 Elsevier B.V. Alternative splicing contributes greatly to the proteomic diversity of metazoans. Protein arginine methyltransferase 5 (PRMT5) methylates arginines of Golgi components and other factors exerting diverse effects on cell growth/differentiation, but the underlying molecular basis for its subcellular distribution and diverse roles has not been fully understood. Here we show the detailed properties of an evolutionarily emerged splice variant of human PRMT5 (PRMT5S) that is distinct from the original isoform (PRMT5L). The isoforms are differentially expressed among mammalian cells and tissues. The PRMT5S is distributed all over the cell but PRMT5L mainly colocalizes with Giantin, a Golgi marker. PRMT5 knockdown led to an enlarged Giantin pattern, which was prevented by the expression of either isoform. Rescuing PRMT5S also increased the percentage of cells with an interphase Giantin pattern compacted at one end of the nucleus, consistent with its cell cycle-arresting effect, while rescuing PRMT5L increased that of the mitotic Giantin patterns of dynamically fragmented structures. Moreover, the isoforms are differentially expressed during neuronal or dendritic cell differentiation, and their ectopic expression showed an opposite effect on dendritic cell differentiation. Furthermore, besides their differential regulation of gene expression, both isoforms also similarly regulate over a thousand genes particularly those involved in apoptosis and differentiation. Taking these properties together, we propose that their differential expression and subcellular localization contribute to spatial and temporal regulation of arginine methylation and gene expression to exert different effects. The novel PRMT5S likely contributes to the observed diverse effects of PRMT5 in cells

    Simple InCl 3

    No full text

    Robust Bio-derived Polyoxometalate Hybrid for Selective Aerobic Oxidation of Benzylic C(sp<sup>3</sup>)–H Bonds

    No full text
    Utilization of natural resources to construct functional catalytic materials for challenging organic reactions is of great importance in the chemical community, which has achieved significant attention. Herein, we describe the synthesis of a robust bio-derived polyoxometalate (POM) hybrid by the reaction of the naturally occurring phytic acid (PhyA) with MoO3, and the obtained hybrid was denoted PhyA–Mo. Systematic studies revealed that the multi-phosphate structure of PhyA enabled the synthesized PhyA–Mo to simultaneously possess a higher concentration of surface-active oxygen species and more negatively charged Mo sites, which played the role of catalytically active sites for aerobic oxidation. These two types of active sites together enabled the PhyA–Mo to show outstanding catalytic activity for aerobic oxidation of benzylic C(sp3)–H in different substrates to generate various carbonyl compounds without using any additional initiator. Importantly, the fact of realizing aerobic oxidation of benzylic C(sp3)–H bonds efficiently over POM-based materials in the absence of any radical initiator represented the main finding and the major breakthrough. Especially, this work provided a general and useful strategy to improve the catalytic performance of POM-based materials by using phosphoric acids containing multi-phosphate groups

    Nitrogen removal performance and microbial community changes in subsurface wastewater infiltration systems (SWISs) at low temperature with different bioaugmentation strategies

    No full text
    Poor nitrogen removal efficiency (mainly nitrate, NO3 −-N) at low temperatures strongly limits application of subsurface wastewater infiltration systems (SWISs). Seven psychrophilic strains (heterotrophic nitrifying bacteria and aerobic denitrifying bacteria) were isolated and added to SWISs to investigate the effect of embedding and direct-dosing bioaugmentation strategies on sewage treatment performance at low temperature. Both bioaugmentation strategies improved ammonium (NH4 +-N) removal efficiencies, and the embedding strategy also exhibited satisfactory NO3 −-N and total nitrogen (TN) removal efficiencies. Pyrosequencing results of the bacterial 16S rRNA gene indicated that the embedding strategy significantly decreased the indigenous soil microbial diversity (p <.05) and altered the bacterial community structure, significantly increasing the relative abundance of Clostridia, which have good nitrate-reducing activity
    corecore