42 research outputs found

    Cathepsin K Deficiency Impaired Ischemia-Induced Neovascularization in Aged Mice

    No full text
    Background. Aging is a major risk factor for cardiovascular disease. Cysteine protease cathepsin K (CatK) has been implicated in the process of angiogenesis, but the exact roles of individual CatK in vessel formation during aging are poorly understood. Methods and Results. To study the putative role of CatK in ischemia-induced angiogenesis, we applied a hindlimb ischemia model to aged wild-type (CatK+/+) and CatK-deficient (CatK−/−) mice. A serial laser Doppler blood-flow analysis revealed that the recovery of the ischemic/normal blood-flow ratio in the aged CatK−/−mice was impaired throughout the follow-up period. On postoperative day 14, CatK deficiency had also impaired capillary formation. CatK deficiency reduced the levels of cleaved Notch1, phospho-Akt, and/or vascular endothelial growth factor (VEGF) proteins in the ischemic muscles and bone marrow-derived c-Kit+ cells. A flow cytometry analysis revealed that CatK deficiency reduced the numbers of endothelial progenitor cell (EPC)-like CD31+/c-Kit+ cells in the peripheral blood as well as the ischemic vasculature. In vitro experiments, CatK−/− impaired bone-derived c-Kit+ cellular functions (migration, invasion, proliferation, and tubulogenesis) in aged mice. Our findings demonstrated that aging impaired the ischemia-induced angiogenesis associated with the reductions of the production and mobilization of CD31+/c-Kit+ cells in mice. Conclusions. These findings established that the impairment of ischemia-induced neovascularization in aged CatK−/− mice is due, at least in part, to the reduction of EPC mobilization and the homing of the cells into vasculature that is associated with the impairment of Notch1 signaling activation at advanced ages

    Species-specific responses of submergedmacrophytes to the presence of a small omnivorous bitterling Acheilognathus macropterus

    No full text
    Recovery of submerged macrophytes has been considered a key factor in the restoration of shallow eutrophic lakes. However, in some subtropical restored lakes, small omnivorous fish dominate the fish assemblages and feed in part on submerged macrophytes. Knowledge of the effects of small omnivores on the growth of submerged macrophytes is scarce and their responses are potentially species-specific, i.e. the growth of some species may be hampered by fish grazing while growth of others may be promoted by the nutrients becoming available by fish excretion. We conducted mesocosm experiments to examine the effects of the small omnivorous bitterling Acheilognathus macropterus, a common species in restored subtropical lakes in China, on nutrient concentrations and the growth of four species of submerged macrophytes (Hydrilla verticillata, Vallisneria denseserrulata, Ceratophyllum demersum and Myriophyllum spicatum). We found that the bitterling significantly increased nutrient concentrations via excretion and thereby enhanced the net growth of the less grazed nuisance macrophyte M. spicatum. In contrast, the net growth of C. demersum was reduced by the bitterling, most likely due to grazing as indicated by gut content analyses. Dominance by bitterling may, therefore, pose a threat to the long-term success of lake restoration by provoking a shift in the submerged macrophyte community towards nuisance species through selective grazing. Nutrient excretion may potentially also stimulate the growth of phytoplankton and periphyton, hampering the growth of submerged macrophyte. (C) 2020 Elsevier B.V. All rights reserved

    A small omnivore fish (

    No full text
    Transplantation of submerged macrophytes has been widely used to improve water quality in restoring shallow lakes in China. However, in some lakes, small omnivorous fish predominated the fish assemblages and fed mainly on submerged macrophytes. Despite significant research examining grazing selectivity in herbivorous fishes, macrophyte feeding preferences of small omnivorous fishes are poorly understood. We conducted a mesocosm experiment to examine the effects of a prolific small omnivorous bitterling fish Acheilognathus macropterus on the relative growth rate (RGR) and biomass of submerged macrophytes (Ceratophyllum demersum, Myriophyllum spicatum, Vallisneria denseserrulata, and Hydrilla verticillata). Our results showed that the presence of A. macropterus significantly increased nutrient concentrations (e.g. total nitrogen and total phosphorus). The RGR of C. demersum in the bitterling-present treatment was significantly lower than the controls, in the presence of other macrophyte species. Further, total biomass of the four species of macrophytes in the fish-present mesocosms was markedly lower than in the fish-absent treatment, suggesting considerable consumption of macrophytes by bitterling. Moreover, the percent biomass of V. denserrulata and H. verticillata were significantly enhanced by the presence of bitterling. Our findings suggest that A. macropterus may increase nutrient concentrations through excretion and reduce the biomass and RGR of certain submerged macrophytes which may shift macrophyte community structure via selective grazing

    A small omnivorous bitterling fish (Acheilognathus macropterus) facilitates dominance of cyanobacteria, rotifers andLimnodrilusin an outdoor mesocosm experiment

    No full text
    Small omnivorous fish often dominate in subtropical shallow lakes, and they may affect the community structure of aquatic organisms on at least two trophic levels. However, in the study of aquatic food webs in subtropical lakes, most ecologists have focused on the effects of large-sized omnivorous species (e.g. common carp), studies of small-sized species being scarce. We conducted a mesocosm experiment with two treatments (fish presence and absence) to examine the effects of a small-sized omnivore, bitterling (Acheilognathus macropterus), on phytoplankton, zooplankton and benthic macroinvertebrates. Our results showed that bitterling presence significantly increased the chlorophyllaconcentration and biomass of phytoplankton, which became dominated by cyanobacteria (mainlyAphanizomenonspp.) that accounted for >99% of both total phytoplankton abundance and biomass. Both the abundance and biomass of zooplankton were also higher in the fish-present treatment, but small rotifers became dominant, and the zooplankton:phytoplankton biomass ratio decreased, indicating less grazing on phytoplankton. Moreover, both the abundance and biomass of benthic macroinvertebrates (tubificids) were higher in the bitterling-present treatment than in the controls, which is opposite to the situation found when omni-benthivorous fish (e.g. crucian carp) dominate. Higher biomass of tubificids may, in turn, result in higher sediment nutrient release. Our study suggests thatA. macropterus, and maybe also other bitterling species, can alter both pelagic and benthic assemblages via both top-down and bottom-up control effects and lead to more turbid water in eutrophic lakes. Thus, more attention should be paid to these small omnivorous species in the restoration and management of shallow subtropical lakes

    The host musselSinanodonta woodianaalleviates negative effects of a small omnivorous fish (Acheilognathus macropterus) on water quality: A mesocosm experiment

    No full text
    Omnivorous fishes are prevalent in warm waters and may have strong impacts on water quality by excreting nutrients and reducing periphyton biomass. However, most studies have focused on large-sized species and overlooked the role of small omnivores. Filter-feeding mussels may modulate the negative effects of small omnivorous fishes on water quality, and stocking of mussels has been frequently used in shallow eutrophic freshwaters in China to improve the water clarity. However, the mechanisms behind such management practices are poorly studied. We conducted a mesocosm experiment to examine the ecosystem effects of the bitterlingAcheilognathus macropterusas modulated by the musselSinanodonta woodiana, one of the mussels upon which it relies for breeding. We hypothesized that bitterling would exert negative effects on the lake environment, specifically higher phytoplankton biomass and lower water clarity, but that these effects might be alleviated by the filter-feeding activities ofS. woodiana. In a 56-d mesocosm experiment with and without bitterling in the presence and absence of mussels, we found interactive effects of bitterling and mussels. In mesocosms with bitterling, nutrient concentrations, phytoplankton biomass, and total suspended solids (TSS) increased, but there were no changes in periphyton biomass in the mussel-free treatments. In contrast to the effects of large-sized omnivorous fishes reported from the literature, bitterling mainly affected TSS levels by increasing organic suspended solids rather than inorganic solids, indicating weak effects on sediment resuspension. However, the presence of mussels alleviated the negative effects of bitterling by decreasing nutrient levels, phytoplankton biomass, and TSS concentrations. Mussels alone had no effects on periphyton biomass, but the mussel-bitterling interactions boosted the growth of periphyton. Our study suggests that the negative effects of bitterling on water quality (e.g., increased nutrient concentrations and phytoplankton biomass) are alleviated by the presence of filter-feeding mussels, but the stimulatory interactive effects of mussels and bitterling on periphyton may impair the recovery of submerged macrophytes

    Nitrogen removal performance and microbial community changes in subsurface wastewater infiltration systems (SWISs) at low temperature with different bioaugmentation strategies

    No full text
    Poor nitrogen removal efficiency (mainly nitrate, NO3 −-N) at low temperatures strongly limits application of subsurface wastewater infiltration systems (SWISs). Seven psychrophilic strains (heterotrophic nitrifying bacteria and aerobic denitrifying bacteria) were isolated and added to SWISs to investigate the effect of embedding and direct-dosing bioaugmentation strategies on sewage treatment performance at low temperature. Both bioaugmentation strategies improved ammonium (NH4 +-N) removal efficiencies, and the embedding strategy also exhibited satisfactory NO3 −-N and total nitrogen (TN) removal efficiencies. Pyrosequencing results of the bacterial 16S rRNA gene indicated that the embedding strategy significantly decreased the indigenous soil microbial diversity (p <.05) and altered the bacterial community structure, significantly increasing the relative abundance of Clostridia, which have good nitrate-reducing activity
    corecore