182 research outputs found

    Hox group 3 paralogous genes act synergistically in the formation of somitic and neural crest-derived structures.

    Get PDF
    Journal ArticleHox genes encode transcription factors that are used to regionalize the mammalian embryo. Analysis of mice carrying targeted mutations in individual and multiple Hox genes is beginning to reveal a complex network of interactions among these closely related genes which is responsible for directing the formation of spatially restricted tissues and structures. In this report we present an analysis of the genetic interactions between all members of the third paralogous group, Hoxa3, Hoxb3, and Hoxd3. Previous analysis has shown that although mice homozygous for loss-of-function mutations in either Hoxa3 or Hoxd3 have no defects in common, mice mutant for both genes demonstrate that these two genes strongly interact in a dosage-dependent manner. To complete the analysis of this paralogous gene family, mice with a targeted disruption of the Hoxb3 gene were generated. Homozygous mutants have minor defects at low penetrance in the formation of both the cervical vertebrae and the IXth cranial nerve. Analysis and comparison of all double-mutant combinations demonstrate that all three members of this paralogous group interact synergistically to affect the development of both neuronal and mesenchymal neural crest-derived structures, as well as somitic mesoderm-derived structures. Surprisingly, with respect to the formation of the cervical vertebrae, mice doubly mutant for Hoxa3 and Hoxd3 or Hoxb3 and Hoxd3 show an indistinguishable defect, loss of the entire atlas. This suggests that the identity of the specific Hox genes that are functional in a given region may not be as critical as the total number of Hox genes operating in that region

    Hox group 3 paralogs regulate the development and migration of the thymus, thyroid, and parathyroid glands.

    Get PDF
    Journal ArticleThe thymus, thyroid, and parathyroid glands in vertebrates develop from the pharyngeal region, with contributions both from pharyngeal endoderm and from neural crest cells in the pharyngeal arches. Hoxa3 mutant homozygotes have defects in the development of all three organs. Roles for the Hoxa3 paralogs, Hoxb3 and Hoxd3, were investigated by examining various mutant combinations. The thyroid defects seen in Hoxa3 single mutants are exacerbated in double mutants with either of its paralogs, although none of the double-mutant combinations resulted in thyroid agenesis. The results indicate that the primary role of these genes in thyroid development is their effect on the development and migration of the ultimobranchial bodies, which contribute the parafollicular or C-cells to the thyroid. Hoxb3, Hoxd3 double mutants show no obvious defects in the thymus or parathyroids. However, the removal of one functional copy of Hoxa3 from the Hoxb3, Hoxd3 double mutants (Hoxa3 +/-, Hoxb3-/-, Hoxd3-/-) results in the failure of the thymus and parathyroid glands to migrate to their normal positions in the throat. Very little is known about the molecular mechanisms used to mediate the movement of tissues during development. These results indicate that Hoxa3, Hoxb3, and Hoxd3 have highly overlapping functions in mediating the migration of pharyngeal organ primordia. In addition, Hoxa3 has a unique function with respect to its paralogs in thymus, parathyroid, and thyroid development. This unique function may be conferred by the expression of Hoxa3, but not Hoxb3 nor Hoxd3, in the pharyngeal pouch endoderm

    Stage-specific changes in fetal thymocyte proliferation during the CD4(-)8(-) to CD4(+)8(+) transition in wild type, Rag1(-/-), and Hoxa3,Pax1 mutant mice

    Get PDF
    BACKGROUND: The function of the thymic microenvironment is to promote thymocyte maturation, in part via regulation of thymocyte proliferation and cell death. Defects in fetal thymic epithelial cell (TEC) development and function, and therefore in the formation of a functional microenvironment, can be caused either directly by TEC differentiation defects or indirectly by defective thymocyte maturation. In this paper we studied fetal thymocyte proliferation during the early transition from the CD3(-)4(-)8(-) (triple negative, TN) to CD4(+)8(+) (double positive, DP) stages. We compared wild type mice with Rag1(-/-) mice and with Hoxa3(+/-)Pax1(-/-) compound mutant mice, which have blocks at different stages of thymocyte development. RESULTS: Wild type fetal and adult thymus showed stage-specific differences in the proliferation profiles of developing thymocytes, with fetal stages showing generally higher levels of proliferation. The proliferation profile of fetal thymocytes from Rag1(-/-) mutants also had stage-specific increases in proliferation compared to wild type fetal thymocytes, in contrast to the lower proliferation previously reported for thymocytes from adult Rag1(-/-) mutants. We have previously shown that Hoxa3(+/-)Pax1(-/-) mice have abnormal fetal TEC development, resulting in increased apoptosis at the TN to DP transition and decreased DP cell numbers. Fetal thymocytes from Hoxa3(+/-)Pax1(-/-) compound mutants had increased proliferation, but fewer proliferating cells, at the DP stage. We also observed a decrease in the level of the cytokines IL-7 and SCF produced by Hoxa3(+/-)Pax1(-/-)TECs. CONCLUSION: Our results indicate complex and stage-specific effects of abnormal TEC development on thymocyte proliferation

    Two Factors that Bind to Highly Conserved Sequences in Mammalian Type C Retroviral Enhancers.

    Get PDF
    The transcriptional enhancers of the Moloney and Friend murine leukemia viruses (MLV) are important determinants of viral pathogenicity. We used electrophoretic mobility shift and methylation interference assays to study nuclear factors which bind to a region of these enhancers whose sequence is identical between Moloney and Friend viruses and particularly highly conserved among 35 mammalian type C retroviruses whose enhancer sequences have been aligned (E. Golemis, N. A. Speck, and N. Hopkins, J. Virol. 64:534-542, 1990). Previous studies identified sites for the leukemia virus factor b (LVb) and core proteins in this region (N. A. Speck and D. Baltimore, Mol. Cell. Biol. 7:1101-1110, 1987) as well as a site, overlapping those for LVb and core, for a third factor (N. R. Manley, M. A. O\u27Connell, P. A. Sharp, and N. Hopkins, J. Virol. 63:4210-4223, 1989). Surprisingly, the latter factor appeared to also bind two sites identified in the Friend MLV enhancer, Friend virus factor a and b1 (FVa and FVb1) sites, although the sequence basis for the ability of the protein to bind these diverse sites was not apparent. Here we describe the further characterization of this binding activity, termed MCREF-1 (for mammalian type C retrovirus enhancer factor 1), and the identification of a consensus sequence for its binding, GGN8GG. We also identify a factor, abundant in mouse T-cell lines and designated LVt, which binds to two sites in the Moloney MLV enhancer, overlapping the previously identified LVb and LVc binding sites. These sites contain the consensus binding site for the Ets family of proteins. We speculate on how distinct arrays of these factors may influence the disease-inducing phenotype

    Hoxb2 and Hoxb4 Act Together to Specify Ventral Body Wall Formation

    Get PDF
    AbstractThree different alleles of the Hoxb4 locus were generated by gene targeting in mice. Two alleles contain insertions of a selectable marker in the first exon in either orientation, and, in the third, the selectable marker was removed, resulting in premature termination of the protein. Presence and orientation of the selectable marker correlated with the severity of the phenotype, indicating that the selectable marker induces cis effects on neighboring genes that influence the phenotype. Homozygous mutants of all alleles had cervical skeletal defects similar to those previously reported for Hoxb4 mutant mice. In the most severe allele, Hoxb4PolII, homozygous mutants died eitherin utero at approximately E15.5 or immediately after birth, with a severe defect in ventral body wall formation. Analysis of embryos showed thinning of the primary ventral body wall in mutants relative to control animals at E11.5, before secondary body wall formation. Prior to this defect, both Alx3 and Alx4 were specifically down regulated in the most ventral part of the primary body wall in Hoxb4PolII mutants. Hoxb4loxp mutants in which theneo gene has been removed did not have body wall or sternum defects. In contrast, both the Hoxb4PolII and the previously described Hoxb2PolII alleles that have body wall defects have been shown to disrupt the expression of bothHoxb2 and Hoxb4 in cell types that contribute to body wall formation. Our results are consistent with a model in which defects in ventral body wall formation require the simultaneous loss of at least Hoxb2 and Hoxb4, and may involve Alx3 and Alx4

    Developing a new paradigm for Thymus organogenesis

    Get PDF
    The mature thymic epithelium is complex, with two major compartments — the cortex and the medulla — each containing several functionally distinct epithelial-cell types. There is considerable debate as to the embryonic origins of these different thymic epithelial-cell subpopulations. The textbook view is a dual origin, with cortical thymic epithelium arising from the ectoderm and medullary thymic epithelium originating in the endoderm. However, the literature has been divided on this issue since it was first considered. In this review, we discuss recent embryological, functional, genetic and molecular data that collectively support a new model of thymus organogenesis and patterning

    Abnormalities of caudal pharyngeal pouch development in Pbx1 knockout mice mimic loss of Hox3 paralogs

    Get PDF
    AbstractPbx1 is a TALE-class homeodomain protein that functions in part as a cofactor for Hox class homeodomain proteins. Previous analysis of the in vivo functions of Pbx1 by targeted mutagenesis in mice has revealed roles for this gene in skeletal patterning and development and in the organogenesis of multiple systems. Both RNA expression and protein localization studies have suggested a possible role for Pbx1 in pharyngeal region development. As several Hox mutants have distinct phenotypes in this region, we investigated the potential requirement for Pbx1 in the development of the pharyngeal arches and pouches and their organ derivatives. Pbx1 homozygous mutants exhibited delayed or absent formation of the caudal pharyngeal pouches, and disorganized patterning of the third pharyngeal pouch. Formation of the third pouch-derived thymus/parathyroid primordia was also affected, with absent or hypoplastic primordia, delayed expression of organ-specific differentiation markers, and reduced proliferation of thymic epithelium. The fourth pouch and the fourth pouch-derived ultimobranchial bodies were usually absent. These phenotypes are similar to those previously reported in Hoxa3−/− single mutants and Hoxa1−/−;Hoxb1−/− or Hoxa3+/−;Hoxb3−/−;Hoxd3−/− compound mutants, suggesting that Pbx1 acts together with multiple Hox proteins in the development of the caudal pharyngeal region. However, some aspects of the Pbx1 mutant phenotype included specific defects that were less severe than those found in known Hox mutant mice, suggesting that some functions of Hox proteins in this region are Pbx1-independent

    Multiple Roles for HOXA3 in Regulating Thymus and Parathyroid Differentiation and Morphogenesis in Mouse

    Get PDF
    Hoxa3 was the first Hox gene to be mutated by gene targeting in mice and is required for the development of multiple endoderm and neural crest cell (NCC)-derived structures in the pharyngeal region. Previous studies have shown that the Hoxa3 null mutant lacks third pharyngeal pouch derivatives, the thymus and parathyroids by E18.5, and organ-specific markers are absent or downregulated during initial organogenesis. Our current analysis of the Hoxa3 null mutant shows that organ-specific domains did undergo initial patterning, but the location and timing of key regional markers within the pouch, including Tbx1, Bmp4 and Fgf8, were altered. Expression of the parathyroid marker Gcm2 was initiated but was quickly downregulated and differentiation failed; by contrast, thymus markers were delayed but achieved normal levels, concurrent with complete loss through apoptosis. To determine the cell type-specific roles of Hoxa3 in third pharyngeal pouch development, we analyzed tissue-specific mutants using endoderm and/or NCC-specific Cre drivers. Simultaneous deletion with both drivers resulted in athymia at E18.5, similar to the null. By contrast, the individual tissue-specific Hoxa3 deletions resulted in small, ectopic thymi, although each had a unique phenotype. Hoxa3 was primarily required in NCCs for morphogenesis. In endoderm, Hoxa3 temporally regulated initiation of the thymus program and was required in a cell-autonomous manner for parathyroid differentiation. Furthermore, Hoxa3 was required for survival of third pharyngeal pouch-derived organs, but expression in either tissue was sufficient for this function. These data show that Hoxa3 has multiple complex and tissue-specific functions during patterning, differentiation and morphogenesis of the thymus and parathyroids

    MiCASA is a new method for quantifying cellular organization

    Get PDF
    While many tools exist for identifying and quantifying individual cell types, few methods are available to assess the relationships between cell types in organs and tissues and how these relationships change during aging or disease states. We present a quantitative method for evaluating cellular organization, using the mouse thymus as a test organ. The thymus is the primary lymphoid organ responsible for generating T cells in vertebrates, and its proper structure and organization is essential for optimal function. Our method, Multitaper Circularly Averaged Spectral Analysis (MiCASA), identifies differences in the tissue-level organization with high sensitivity, including defining a novel type of phenotype by measuring variability as a specific parameter. MiCASA provides a novel and easily implemented quantitative tool for assessing cellular organization

    Lack of Foxp3 function and expression in the thymic epithelium

    Get PDF
    Foxp3 is essential for the commitment of differentiating thymocytes to the regulatory CD4+ T (T reg) cell lineage. In humans and mice with a genetic Foxp3 deficiency, absence of this critical T reg cell population was suggested to be responsible for the severe autoimmune lesions. Recently, it has been proposed that in addition to T reg cells, Foxp3 is also expressed in thymic epithelial cells where it is involved in regulation of early thymocyte differentiation and is required to prevent autoimmunity. Here, we used genetic tools to demonstrate that the thymic epithelium does not express Foxp3. Furthermore, we formally showed that genetic abatement of Foxp3 in the hematopoietic compartment, i.e. in T cells, is both necessary and sufficient to induce the autoimmune lesions associated with Foxp3 loss. In contrast, deletion of a conditional Foxp3 allele in thymic epithelial cells did not result in detectable changes in thymocyte differentiation or pathology. Therefore, in mice the only known role for Foxp3 remains promotion of T reg cell differentiation within the T cell lineage, whereas there is no role for Foxp3 in thymic epithelial cells
    • …
    corecore