240 research outputs found

    The transcriptional architecture of phenotypic dimorphism

    Get PDF
    The profound differences between the sexes in gene expression are increasingly used to study the molecular basis of sexual dimorphism, sexual selection and sexual conflict . Studies of transcriptional architecture, based on comparisons of gene expression, have been implemented on a wide variety of other intra - specific variation. These efforts are based on key assumptions regarding the relationship between transcriptional architecture, phenotypic variation and the target of selection. Some of these assumptions are better supported by available evidence than others. In all cases, the evidence is largely circumstantial, leaving considerable gaps in our understanding of the relationship between transcriptional and phenotypic dimorphism

    Evolutionary diversity and turn-over of sex determination in teleost fishes.

    Get PDF
    Sex determination, due to the obvious association with reproduction and Darwinian fitness, has been traditionally assumed to be a relatively conserved trait. However, research on teleost fishes has shown that this need not be the case, as these animals display a remarkable diversity in the ways that they determine sex. These different mechanisms, which include constitutive genetic mechanisms on sex chromosomes, polygenic constitutive mechanisms, environmental influences, hermaphroditism, and unisexuality have each originated numerous independent times in the teleosts. The evolutionary lability of sex determination, and the corresponding rapid rate of turn-over among different modes, makes the teleost clade an excellent model with which to test theories regarding the evolution of sex determining adaptations. Much of the plasticity in sex determination likely results from the dynamic teleost genome, and recent advances in fish genetics and genomics have revealed the role of gene and genome duplication in fostering emergence and turn-over of sex determining mechanisms

    Microsatellite variation and differentiation in North Atlantic eels.

    Get PDF
    We screened 11 populations of American, European, and Icelandic eels (Anguillidae) for allelic variation and genetic divergence at six polymorphic microsatellite loci. Within either of the two recognized Anguilla species in the North Atlantic (rostrata in the Americas, anguilla in Europe), population genetic structure was statistically significant but weak; fully 95% of the total genetic variation was present within geographic locales rather than distributed among them. The two Anguilla species also overlap greatly in allelic frequencies, so the available data proved ineffective for addressing hypotheses about the possible hybrid origins of some Icelandic eels. The overlapping microsatellite profiles contrast with nearly diagnostic species differences documented previously in allozymes and mtDNA. This and similar empirical findings in several other species support theoretical concerns that homoplasy (convergent evolution) in allelic states can compromise the utility of rapidly mutating microsatellite loci for certain types of microevolutionary questions regarding gene flow and species differences

    Tissue Specificity and Sex-Specific Regulatory Variation Permit the Evolution of Sex-Biased Gene Expression

    Get PDF
    Genetic correlations between males and females are often thought to constrain the evolution of sexual dimorphism. However, sexually dimorphic traits and the underlying sexually dimorphic gene expression patterns are often rapidly evolving. We explore this apparent paradox by measuring the genetic correlation in gene expression between males and females (Cmf) across broad evolutionary timescales, using two RNA-sequencing data sets spanning multiple populations and multiple species. We find that unbiased genes have higher Cmf than sex-biased genes, consistent with intersexual genetic correlations constraining the evolution of sexual dimorphism. However, we found that highly sex-biased genes (both male and female biased) also had higher tissue specificity, and unbiased genes had greater expression breadth, suggesting that pleiotropy may constrain the breakdown of intersexual genetic correlations. Finally, we show that genes with high Cmf showed some degree of sex-specific changes in gene expression in males and females. Together, our results suggest that genetic correlations between males and females may be less important in constraining the evolution of sex-biased gene expression than pleiotropy. Sex-specific regulatory variation and tissue specificity may resolve the paradox of widespread sex bias within a largely shared genome

    Independent stratum formation on the avian sex chromosomes reveals inter-chromosomal gene conversion and predominance of purifying selection on the w chromosome

    Get PDF
    We used a comparative approach spanning three species and 90 million years to study the evolutionary history of the avian sex chromosomes. Using whole transcriptomes, we assembled the largest cross-species dataset of W-linked coding content to date. Our results show that recombination suppression in large portions of the avian sex chromosomes has evolved independently, and that long-term sex chromosome divergence is consistent with repeated and independent inversions spreading progressively to restrict recombination. In contrast, over short-term periods we observe heterogeneous and locus-specific divergence. We also uncover four instances of gene conversion between both highly diverged and recently evolved gametologs, suggesting a complex mosaic of recombination suppression across the sex chromosomes. Lastly, evidence from 16 gametologs reveal that the W chromosome is evolving with a significant contribution of purifying selection, consistent with previous findings that W-linked genes play an important role in encoding sex-specific fitness

    Positive selection underlies Faster-Z evolution of gene expression in birds.

    Get PDF
    The elevated rate of evolution for genes on sex chromosomes compared to autosomes (Fast-X or Fast-Z evolution) can result either from positive selection in the heterogametic sex, or from non-adaptive consequences of reduced relative effective population size. Recent work in birds suggests that Fast-Z of coding sequence is primarily due to relaxed purifying selection resulting from reduced relative effective population size. However, gene sequence and gene expression are often subject to distinct evolutionary pressures, therefore we tested for Fast-Z in gene expression using next-generation RNA-sequencing data from multiple avian species. Similar to studies of Fast-Z in coding sequence, we recover clear signatures of Fast-Z in gene expression, however in contrast to coding sequence, our data indicate that Fast-Z in expression is due to positive selection acting primarily in females. In the soma, where gene expression is highly correlated between the sexes, we detected Fast-Z in both sexes, although at a higher rate in females, suggesting that many positively selected expression changes in females are also expressed in males. In the gonad, where inter-sexual correlations in expression are much lower, we detected Fast-Z for female gene expression, but crucially, not males. This suggests that a large amount of expression variation is sex-specific in its effects within the gonad. Taken together, our results indicate that Fast-Z evolution of gene expression is the product of positive selection acting on recessive beneficial alleles in the heterogametic sex. More broadly, our analysis suggests that the adaptive potential of Z chromosome gene expression may be much greater than that of gene sequence, results which have important implications for the role of sex chromosomes in speciation and sexual selection

    Conflict on the sex chromosomes: cause, effect, and complexity

    Get PDF
    Intralocus sexual conflict and intragenomic conflict both affect sex chromosome evolution and can in extreme cases even cause the complete turnover of sex chromosomes. Additionally, established sex chromosomes often become the focus of heightened conflict. This creates a tangled relationship between sex chromosomes and conflict with respect to cause and effect. To further complicate matters, sexual and intragenomic conflict may exacerbate one another and thereby further fuel sex chromosome change. Different magnitudes and foci of conflict offer potential explanations for lineage-specific variation in sex chromosome evolution and answer long-standing questions as to why some sex chromosomes are remarkably stable, whereas others show rapid rates of evolutionary change.J.E.M. is supported by the European Research Council (grant agreement 260233) and a short-term fellowship from the Wissenschaftskolleg zu Berlin. D.J.H. is supported by the University of Exeter, and N.W. by the University of Exeter and The Royal Society (Wolfson Award)

    Evolution of alternative sex-determining mechanisms in teleost fishes

    Get PDF
    We compiled information from the literature on the taxonomic distributions in extant teleost fishes of alternative sex-determination systems: male-heterogametic (XY) gonochorism, female-heterogametic (ZW) gonochorism, hermaphroditism, unisexuality, and environmental dependency. Then, using recently published molecular phylogenies based on whole-genomic or partial mitochondrial DNA sequences, we inferred the histories and evolutionary transitions between these reproductive modes by employing maximum parsimony and maximum likelihood methods of phylogenetic character mapping. Across a broad teleost phylogeny involving 25 taxonomic orders, a highly patchy distribution of different sex-determination mechanisms was uncovered, implying numerous transitions between alternative modes, but this heterogeneity also precluded definitive statements about ancestral states for most clades. Closer inspection of family-level and genus-level phylogenies within each of four orders further bolstered the conclusion that shifts in sex-determining modes are evolutionarily frequent and involve a variety of distinct ancestral-descendant pathways. For possible reasons discussed herein, the evolutionary lability of sex-determining modes in fishes contrasts strikingly with the evolutionary conservatism of sex determination within both mammals and birds. Β© 2006 The Linnean Society of London

    Incomplete sex chromosome dosage compensation in the Indian meal moth, Plodia interpunctella, based on de novo transcriptome assembly.

    Get PDF
    Journal ArticleResearch Support, Non-U.S. Gov'tMales and females experience differences in gene dose for loci in the nonrecombining region of heteromorphic sex chromosomes. If not compensated, this leads to expression imbalances, with the homogametic sex on average exhibiting greater expression due to the doubled gene dose. Many organisms with heteromorphic sex chromosomes display global dosage compensation mechanisms, which equalize gene expression levels between the sexes. However, birds and Schistosoma have been previously shown to lack chromosome-wide dosage compensation mechanisms, and the status in other female heterogametic taxa including Lepidoptera remains unresolved. To further our understanding of dosage compensation in female heterogametic taxa and to resolve its status in the lepidopterans, we assessed the Indian meal moth, Plodia interpunctella. As P. interpunctella lacks a complete reference genome, we conducted de novo transcriptome assembly combined with orthologous genomic location prediction from the related silkworm genome, Bombyx mori, to compare Z-linked and autosomal gene expression levels for each sex. We demonstrate that P. interpunctella lacks complete Z chromosome dosage compensation, female Z-linked genes having just over half the expression level of males and autosomal genes. This finding suggests that the Lepidoptera and possibly all female heterogametic taxa lack global dosage compensation, although more species will need to be sampled to confirm this assertion.Royal Society Wolfson AwardEuropean Research Council Framework

    Are plant and animal sex chromosomes really all that different?

    Get PDF
    This is the author accepted manuscript. The final version is available from the Roya; Society via the DOI in this recordSex chromosomes in plants have often been contrasted with those in animals with the goal of identifying key differences that can be used to elucidate fundamental evolutionary properties. For example, the often homomorphic sex chromosomes in plants have been compared to the highly divergent systems in some animal model systems, such as birds, Drosophila and therian mammals, with many hypotheses offered to explain the apparent dissimilarities, including the younger age of plant sex chromosomes, the lesser prevalence of sexual dimorphism, or the greater extent of haploid selection. Furthermore, many plant sex chromosomes lack complete sex chromosome dosage compensation observed in some animals, including therian mammals, Drosophila, some poeciliids, and Anolis, and plant dosage compensation, where it exists, appears to be incomplete. Even the canonical theoretical models of sex chromosome formation differ somewhat between plants and animals. However, the highly divergent sex chromosomes observed in some animal groups are actually the exception, not the norm, and many animal clades are far more similar to plants in their sex chromosome patterns. This begs the question of how different are plant and animal sex chromosomes, and which of the many unique properties of plants would be expected to affect sex chromosome evolution differently than animals? In fact, plant and animal sex chromosomes exhibit more similarities than differences, and it is not at all clear that they differ in terms of sexual conflict, dosage compensation, or even degree of divergence. Overall, the largest difference between these two groups is the greater potential for haploid selection in plants compared to animals. This may act to accelerate the expansion of the non-recombining region at the same time that it maintains gene function within it. This article is part of the theme issue 'Sex determination and sex chromosome evolution in land plants'.Canada 150 Research ChairNational Sciences and Engineering Research Council of Canad
    • …
    corecore