12 research outputs found

    Fc gamma receptor polymorphisms in systemic lupus erythematosus and their correlation with the clinical severity of the disease

    Get PDF
    Receptors for the Fc domains of IgG (Fc \u3b3 R) play a critical role in linking humoral and cellular immune responses. The various Fc \u3b3 R genes may contribute to differences in infectious and immune related diseases in various ethnic populations. Polymorphisms of Fc \u3b3 R mainly Fc \u3b3 R IIA, IIB, IIIA, IIIB have been identified as genetic factors influencing susceptibility to disease or disease course of a prototype autoimmune disease like Systemic Lupus Erythematosus (SLE). Activated and inhibitory Fc \u3b3 Rs seem to play an important role in the pathogenesis of SLE, in initiation of autoimmunity, the subsequent development of inflammatory lesions and finally immune clearance mechanisms. This review focuses on the role of Fc \u3b3 R polymorphism and their association with clinical manifestations and initiation of autoantibody production, inflammatory handling of immune complexes and disease development in SLE patients

    APO-1/Fas gene: Structural and functional characteristics in systemic lupus erythematosus and other autoimmune diseases

    Get PDF
    Systemic lupus erythematosus (SLE) is an autoimmune disorder affecting multiple organ systems. It is characterized by the presence of autoantibodies reactive against various self-antigens. Susceptibility to SLE is found to be associated with many major histocompatibility complex (MHC) and non-MHC genes, one of which is APO-1/Fas gene, which is present on chromosome 10 in humans. The APO-1/Fas promoter contains consensus sequences for binding of several transcription factors that affect the intensity of Fas expression in cells. The mutations in the APO-1/Fas promoter are associated with risk and severity in various autoimmune diseases and other malignancies. The APO-1/Fas receptor is expressed by many cell types. Two forms of APO-1/Fas protein that are involved in regulation of apoptosis have been identified. Fas receptor-mediated apoptosis plays a physiological and pathological role in killing of infected cell targets. In this review, we have focused on APO-1/Fas gene structure, promoter variants and its association with SLE and other autoimmune diseases. Functional aspects of Fas receptor in apoptosis are also discussed

    Fc gamma receptor polymorphisms in systemic lupus erythematosus and their correlation with the clinical severity of the disease

    Get PDF
    Receptors for the Fc domains of IgG (Fc γ R) play a critical role in linking humoral and cellular immune responses. The various Fc γ R genes may contribute to differences in infectious and immune related diseases in various ethnic populations. Polymorphisms of Fc γ R mainly Fc γ R IIA, IIB, IIIA, IIIB have been identified as genetic factors influencing susceptibility to disease or disease course of a prototype autoimmune disease like Systemic Lupus Erythematosus (SLE). Activated and inhibitory Fc γ Rs seem to play an important role in the pathogenesis of SLE, in initiation of autoimmunity, the subsequent development of inflammatory lesions and finally immune clearance mechanisms. This review focuses on the role of Fc γ R polymorphism and their association with clinical manifestations and initiation of autoantibody production, inflammatory handling of immune complexes and disease development in SLE patients

    Anti-nucleosome antibodies as a disease marker in systemic lupus erythematosus and its correlation with disease activity and other autoantibodies

    No full text
    Background: Detection of anti-nucleosome antibodies (anti-nuc) in patients with systemic lupus erythematosus (SLE) has been well established and it is claimed that their presence is associated with disease activity. Aims: The aim of this study is to evaluate the incidence of anti-nuc antibodies and to correlate them with disease activity and its association with other autoantibodies like anti-nuclear antibodies (ANA), anti-double stranded DNA (anti-dsDNA), anti-histone antibodies (AHA), as well as autoantibodies to histone subfractions like H1, (H2A-H4) complex, H2B, and H3. Methods: This cross-sectional study included 100 SLE patients referred from the Rheumatology, Dermatology, and Nephrology Departments. SLE disease activity was evaluated by using SLE-Disease Activity Index (SLEDAI) score. A patient was defined as having active SLE when the SLEDAI score was more than 5.0. Fifty normal controls were also tested as a healthy control group. Anti-nuc antibodies, anti-dsDNA, and AHA were tested by Enzyme-Linked Immunosorbent Assay (ELISA) and ANA was detected by an indirect immunofluorescence test. Results: All patients studied were in an active stage of disease and were untreated, of which 44 patients had renal biopsy-proven kidney involvement, which was categorized as lupus nephritis (LN) and 56 patients did not show any renal manifestations (SLE without LN). Anti-nuc antibodies were positive in 88%, anti-dsDNA in 80%, and AHA in 38% of the cases. ANA was positive in all SLE patients studied. None of the normal controls was found to be positive for these antibodies. Although a slightly higher incidence of autoantibodies were noted in LN, there was no statistical difference noted between LN and SLE without LN groups for anti-nuc and anti-dsDNA antibodies (p > 0.05). A higher incidence of autoantibodies to ANA specificities were noted in anti-nuc positive cases, but there was no statistical difference between anti-nuc positive and anti-nuc negative cases for ANA specificities among LN and SLE without nephritis groups (p > 0.05). Conclusions: Anti-nuc antibody detection could be a better tool for the diagnosis of SLE. Although there was no significant difference in LN and SLE without LN groups, this study suggests that anti-nuc detection can be useful as an additional disease activity marker to other laboratory tests

    APO-1/Fas gene: Structural and functional characteristics in systemic lupus erythematosus and other autoimmune diseases

    Get PDF
    Systemic lupus erythematosus (SLE) is an autoimmune disorder affecting multiple organ systems. It is characterized by the presence of autoantibodies reactive against various self-antigens. Susceptibility to SLE is found to be associated with many major histocompatibility complex (MHC) and non-MHC genes, one of which is APO-1/Fas gene, which is present on chromosome 10 in humans. The APO-1/Fas promoter contains consensus sequences for binding of several transcription factors that affect the intensity of Fas expression in cells. The mutations in the APO-1/Fas promoter are associated with risk and severity in various autoimmune diseases and other malignancies. The APO-1/Fas receptor is expressed by many cell types. Two forms of APO-1/Fas protein that are involved in regulation of apoptosis have been identified. Fas receptor-mediated apoptosis plays a physiological and pathological role in killing of infected cell targets. In this review, we have focused on APO-1/Fas gene structure, promoter variants and its association with SLE and other autoimmune diseases. Functional aspects of Fas receptor in apoptosis are also discussed

    Effect of Proinflammatory Cytokines (IL-6, TNF-α, and IL-1β) on Clinical Manifestations in Indian SLE Patients

    No full text
    Systemic lupus erythematosus (SLE) is an inflammatory rheumatic disease characterized by production of autoantibodies and organ damage. Elevated levels of cytokines have been reported in SLE patients. In this study we have investigated the effect of proinflammatory cytokines (IL-6, TNF-α, and IL-1β) on clinical manifestations in 145 Indian SLE patients. One hundred and forty-five healthy controls of the same ethnicity served as a control group. Clinical disease activity was scored according to SLEDAI score. Accordingly, 110 patients had active disease and 35 patients had inactive disease. Mean levels of IL-6, TNF-α, and IL-1β were found to be significantly higher in SLE patients than healthy controls (P<0.001). Mean level of IL-6 for patients with active disease (70.45±68.32 pg/mL) was significantly higher (P=0.0430) than those of inactive disease patients (43.85±63.36 pg/mL). Mean level of TNF-α was 44.76±68.32 pg/mL for patients with active disease while it was 25.97±22.03 pg/mL for those with inactive disease and this difference was statistically significant (P=0.0161). Similar results were obtained for IL-1β (P=0.0002). Correlation between IL-6, TNF-α, and IL-1β serum levels and SLEDAI score was observed (r=0.20, r=0.27, and r=0.38, resp.). This study supports the role of these proinflammatory cytokines as inflammatory mediators in active stage of disease
    corecore