33 research outputs found

    Metabolic analyses reveal common adaptations in two invasive Haemophilus influenzae strains

    Get PDF
    Non-typeable Haemophilus influenzae (NTHi) is a major pathogen in upper and lower respiratory tract infections in humans, and is increasingly also associated with invasive disease. We have examined two unrelated NTHi invasive disease isolates, R2866 and C188, in order to identify metabolic and physiological properties that distinguish them from respiratory tract disease isolates such as Hi2019. While the general use of the Hi metabolic network was similar across all three strains, the two invasive isolates secreted increased amounts of succinate which can have anti-inflammatory properties. In addition, they showed a common shift in their carbon source utilization patterns, with strongly enhanced metabolism of nucleoside substrates, glucose and sialic acid. The latter two are major compounds present in blood and CSF. Interestingly, C188 and R2866 also shared a reduced ability to invade or survive intracellularly in 16HBE14 bronchial epithelial cells relative to Hi2019 (4-fold (4 h), 25-fold (24 h) reduction). Altered metabolic properties such as the ones observed here could arise from genomic adaptations that NTHi undergo during infection. Together these data indicate that shifts in substrate preferences in otherwise conserved metabolic pathways may underlie strain niche specificity and thus have the potential to alter the outcomes of host-NTHi interactions

    Contribution of Citrulline Ureidase to Francisella tularensis Strain Schu S4 Pathogenesisâ–¿

    No full text
    The citrulline ureidase (CTU) activity has been shown to be associated with highly virulent Francisella tularensis strains, including Schu S4, while it is absent in avirulent or less virulent strains. A definitive role of the ctu gene in virulence and pathogenesis of F. tularensis Schu S4 has not been assessed; thus, an understanding of the significance of this phenotype is long overdue. CTU is a carbon-nitrogen hydrolase encoded by the citrulline ureidase (ctu) gene (FTT0435) on the F. tularensis Schu S4 genome. In the present study, we evaluated the contribution of the ctu gene in the virulence of category A agent F. tularensis Schu S4 by generating a nonpolar deletion mutant, the Δctu mutant. The deletion of the ctu gene resulted in loss of CTU activity, which was restored by transcomplementing the ctu gene. The Δctu mutant did not exhibit any growth defect under acellular growth conditions; however, it was impaired for intramacrophage growth in resting as well as gamma interferon-stimulated macrophages. The Δctu mutant was further tested for its virulence attributes in a mouse model of respiratory tularemia. Mice infected intranasally with the Δctu mutant showed significantly reduced bacterial burden in the lungs, liver, and spleen compared to wild-type (WT) Schu S4-infected mice. The reduced bacterial burden in mice infected with the Δctu mutant was also associated with significantly lower histopathological scores in the lungs. Mice infected with the Δctu mutant succumbed to infection, but they survived longer and showed significantly extended median time to death compared to that shown by WT Schu S4-infected mice. To conclude, this study demonstrates that ctu contributes to intracellular survival, in vivo growth, and pathogenesis. However, ctu is not an absolute requirement for the virulence of F. tularensis Schu S4 in mice

    Not Available

    No full text
    Not AvailableTo survive and replicate in the host, S. Typhimurium have evolved several metabolic pathways. The glyoxylate shunt is one such pathway that can utilize acetate for the synthesis of glucose and other biomolecules. This pathway is a bypass of the TCA cycle in which CO2 generating steps are omitted. Two enzymes involved in the glyoxylate cycle are isocitrate lyase (ICL) and malate synthase (MS). We determined the contribution of MS in the survival of S. Typhimurium under carbon limiting and oxidative stress conditions. The ms gene deletion strain (∆ms strain) grew normally in LB media but failed to grow in M9 minimal media supplemented with acetate as a sole carbon source. However, the ∆ms strain showed hypersensitivity (p < 0.05) to hypochlorite. Further, ∆ms strain has been significantly more susceptible to neutrophils. Interestingly, several folds induction of ms gene was observed following incubation of S. Typhimurium with neutrophils. Further, ∆ms strain showed defective colonization in poultry spleen and liver. In short, our data demonstrate that the MS contributes to the virulence of S. Typhimurium by aiding its survival under carbon starvation and oxidative stress conditions.This piece of work was funded by the Department of Biotechnology, India (Grant No.: BT/PR13689/ BRB/10/1399/2015) and NASF, ICAR, India (Grant No.: NFBSFARA/BS-3012/2012-13). The funders have no role in study design, data collection and analysis, decision to publish or preparation of the manuscript. We thank our Director, ICAR-Indian Veterinary Research Institute (IVRI) for providing the necessary facilities. Ratanti Sarkhel acknowledges the support from ICAR and Indian Council of Medical Research (ICMR-SRF), India

    Not Available

    No full text
    Not AvailableBackground: The increase in reactive oxygen species (ROS) production during cryopreservation of semen, leads to oxidation of biomolecules affecting the functionality of spermatozoa. Methionine residues in proteins are highly prone to oxidation and get converted into methionine sulfoxide (MetO). Methionine sulfoxide reductase A (MsrA) can improve the functionality of spermatozoa by reducing the MetO to methionine restoring the lost functionality of the affected proteins. Objective: The expression of catalytically active recombinant MsrA (rMsrA). Methods: The msrA gene was PCR amplified, cloned and sequenced. Further, the recombinant clone was used for protein expression and purification. The protein was getting precipitated during dialysis in Tris-buffer. Hence, the purified rMsrA was dialyzed at 4°C against the Tris-buffer pH 7.5 containing MgCl2, KCl, NaCl, urea and triton X-100. During dialysis, changes of buffer were done at every 12 h interval with stepwise reduction in the concentrations of NaCl, urea and triton X-100. The final dialysis was done with buffer containing 10 mM MgCl2, 30 mM KCl, and 150 mM NaCl, 25 mM Tris-HCl pH 7.5. The activity of the rMsrA was checked spectrophotometrically. Results: The protein BLAST of buffalo MsrA with bovine sequence showed 14 amino acid mismatches. The rMsrA has been purified under denaturing conditions as it was forming inclusion bodies consistently during protein expression. After renaturation, the purified 33 kDa rMsrA was catalytically active by biochemical assay. Conclusion: The rMsrA expressed in prokaryotic system is catalytically active and can be used for supplementation to semen extender to repair the oxidatively damaged seminal plasma proteins that occur during cryopreservation.Not Availabl

    Identification of a live attenuated vaccine candidate for tularemia prophylaxis.

    Get PDF
    Francisella tularensis is the causative agent of a fatal human disease, tularemia. F. tularensis was used in bioweapon programs in the past and is now classified as a category A select agent owing to its possible use in bioterror attacks. Despite over a century since its discovery, an effective vaccine is yet to be developed. In this study four transposon insertion mutants of F. tularensis live vaccine strain (LVS) in Na/H antiporter (FTL_0304), aromatic amino acid transporter (FTL_0291), outer membrane protein A (OmpA)-like family protein (FTL_0325) and a conserved hypothetical membrane protein gene (FTL_0057) were evaluated for their attenuation and protective efficacy against F. tularensis SchuS4 strain. All four mutants were 100-1000 fold attenuated for virulence in mice than parental F. tularensis. Except for the FTL_0304, single intranasal immunization with the other three mutants provided 100% protection in BALB/c mice against intranasal challenge with virulent F. tularensis SchuS4. Differences in the protective ability of the FTL_0325 and FTL_0304 mutant which failed to provide protection against SchuS4 were investigated further. The results indicated that an early pro-inflammatory response and persistence in host tissues established a protective immunity against F. tularensis SchuS4 in the FTL_0325 immunized mice. No differences were observed in the levels of serum IgG antibodies amongst the two vaccinated groups. Recall response studies demonstrated that splenocytes from the FTL_0325 mutant immunized mice induced significantly higher levels of IFN-γ and IL-17 cytokines than the FTL_0304 immunized counterparts indicating development of an effective memory response. Collectively, this study demonstrates that persistence of the vaccine strain together with its ability to induce an early pro-inflammatory innate immune response and strong memory responses can discriminate between successful and failed vaccinations against tularemia. This study describes a live attenuated vaccine which may prove to be an ideal vaccine candidate for prevention of respiratory tularemia

    Identification of Francisella tularensis Live Vaccine Strain CuZn Superoxide Dismutase as Critical for Resistance to Extracellularly Generated Reactive Oxygen Species▿ †

    No full text
    Francisella tularensis is an intracellular pathogen whose survival is in part dependent on its ability to resist the microbicidal activity of host-generated reactive oxygen species (ROS) and reactive nitrogen species (RNS). In numerous bacterial pathogens, CuZn-containing superoxide dismutases (SodC) are important virulence factors, localizing to the periplasm to offer protection from host-derived superoxide radicals (O2−). In the present study, mutants of F. tularensis live vaccine strain (LVS) deficient in superoxide dismutases (SODs) were used to examine their role in defense against ROS/RNS-mediated microbicidal activity of infected macrophages. An in-frame deletion F. tularensis mutant of sodC (ΔsodC) and a F. tularensis ΔsodC mutant with attenuated Fe-superoxide dismutase (sodB) gene expression (sodB ΔsodC) were constructed and evaluated for susceptibility to ROS and RNS in gamma interferon (IFN-γ)-activated macrophages and a mouse model of respiratory tularemia. The F. tularensis ΔsodC and sodB ΔsodC mutants showed attenuated intramacrophage survival in IFN-γ-activated macrophages compared to the wild-type F. tularensis LVS. Transcomplementing the sodC gene in the ΔsodC mutant or inhibiting the IFN-γ-dependent production of O2− or nitric oxide (NO) enhanced intramacrophage survival of the sod mutants. The ΔsodC and sodB ΔsodC mutants were also significantly attenuated for virulence in intranasally challenged C57BL/6 mice compared to the wild-type F. tularensis LVS. As observed for macrophages, the virulence of the ΔsodC mutant was restored in ifn-γ−/−, inos−/−, and phox−/− mice, indicating that SodC is required for resisting host-generated ROS. To conclude, this study demonstrates that SodB and SodC act to confer protection against host-derived oxidants and contribute to intramacrophage survival and virulence of F. tularensis in mice

    Peptide methionine sulfoxide reductase from Haemophilus influenzae is required for protection against HOCl and affects the host response to infection

    No full text
    Peptide methionine sulfoxide reductases (Msrs) are enzymes that repair ROS-damage to sulfur-containing amino acids such as methionine, ensuring functional integrity of cellular proteins. Here we have shown that unlike the majority of pro- and eukaryotic Msrs, the peptide methionine sulfoxide reductase (MsrAB) from the human pathobiont (Hi) is required for the repair of hypochlorite damage to cell envelope proteins, but more importantly, we were able to demonstrate that MsrAB plays a role in modulating the host immune response to Hi infection. Loss of MsrAB resulted in >1000-fold increase in sensitivity of Hi to HOCl-mediated killing, and also reduced biofilm formation and in-biofilm survival. Expression of was also induced by hydrogen peroxide and paraquat, but a Hi2019 strain was not susceptible to killing by these ROS in vitro. Hi2019 fitness in infection models was low, with a 3-fold reduction in intracellular survival in bronchial epithelial cells, increased susceptibility to neutrophil killing, and a 10-fold reduction in survival in a mouse model of lung infection. Interestingly, infection with Hi2019 led to specific changes in the antibacterial response of human host cells, with genes encoding antimicrobial peptides (BPI, CAMP) upregulated between 4 and 9 fold compared to infection with Hi2019, and reduction in expression of two proteins with antiapoptotic functions (BIRC3, XIAP). Modulation of host immune responses is a novel role for an enzyme of this type and provides first insights into mechanisms by which MsrAB supports Hi survival in vivo

    <i>FTL_0304</i>, <i>FTL_0291</i>, <i>FTL_0325</i> and <i>FTL_0057</i> mutants are highly attenuated for virulence in BALB/c and C57BL/6 mice.

    No full text
    a<p>6–8 weeks old mice were infected i.n. with either <i>F. tularensis</i> LVS or the indicated mutants and monitored for mortality for 28 days. Data are shown as number of mice survived/total number of mice infected.</p

    Immunization with the <i>FTL_0325</i> mutant induces a higher pro-inflammatory cytokine response in the spleen.

    No full text
    <p>BALB/c mice (n = 4) were infected with 1×10<sup>7</sup> CFU of the indicated mutants and wild type <i>F. tularensis</i> LVS. At the indicated times, the levels of pro-inflammatory cytokines were measured in spleen homogenates using a Cytometric Bead Array assay. The data are representative of two independent experiments conducted and were analyzed using ANOVA with Tukey-Kramer Multiple Comparison post-test and <i>P</i> values were recorded. *<i>P<</i>0.05<i>; **P</i><0.01; ***<i>P<</i>0.001. Ψ = Mice infected with 1×10<sup>7</sup> CFU of <i>F. tularensis</i> LVS succumbed to infection by day 7 PI and hence were unavailable for comparison.</p
    corecore