788 research outputs found

    Two-qubit non-Markovianity induced by a common environment

    Full text link
    We study non-Markovianity as backflow of information in two-qubit systems. We consider a setting where, by changing the distance between the qubits, one can interpolate between independent reservoir and common reservoir scenarios. We demonstrate that non-Markovianity can be induced by the common reservoir and single out the physical origin of this phenomenon. We show that two-qubit non-Markovianity coincides with instances of non-divisibility of the corresponding dynamical map, and we discuss the pair of states maximizing information flowback. We also discuss the issue of additivity for the measure we use and in doing so, give an indication of its usefulness as a resource for multipartite quantum systems.Comment: 9 pages, 5 figures, Published version with minor modification

    Two-qubit non-Markovianity induced by a common environment

    Get PDF

    Entanglement trapping in a non-stationary structured reservoir

    Get PDF
    We study a single two-level atom interacting with a reservoir of modes defined by a reservoir structure function with a frequency gap. Using the pseudomodes technique, we derive the main features of a trapping state formed in the weak coupling regime. Utilising different entanglement measures we show that strong correlations and entanglement between the atom and the modes are in existence when this state is formed. Furthermore, an unexpected feature for the reservoir is revealed. In the long time limit and for weak coupling the reservoir spectrum is not constant in time.Comment: 10 pages, 16 figure

    Remote polarization entanglement generation by local dephasing and frequency upconversion

    Full text link
    We introduce a scheme for remote entanglement generation for the photon polarization. The technique is based on transferring the initial frequency correlations to specific polarization-frequency correlations by local dephasing and their subsequent removal by frequency up-conversion. On fundamental level, our theoretical results show how to create and transfer entanglement, to particles which never interact, by means of local operations. This possibility stems from the multi-path interference and its control in frequency space. For applications, the developed techniques and results allow for the remote generation of entanglement with distant parties without Bell state measurements and opens the perspective to probe frequency-frequency entanglement by measuring the polarization state of the photons.Comment: 8 page

    Dynamical memory effects in correlated quantum channels

    Get PDF
    Memory effects play a fundamental role in the study of the dynamics of open quantum systems. There exist two conceptually distinct notions of memory discussed for quantum channels in the literature. In quantum information theory quantum channels with memory are characterized by the existence of correlations between successive applications of the channel on a sequence of quantum systems. In open quantum systems theory memory effects arise dynamically during the time evolution of quantum systems and define non-Markovian dynamics. Here we relate and combine these two different concepts of memory. In particular, we study the interplay between correlations between multiple uses of quantum channels and non-Markovianity as nondivisibility of the t-parametrized family of channels defining the dynamical map

    Decoherence and robustness of parity-dependent entanglement in the dynamics of a trapped ion

    Get PDF
    We study the entanglement between the 2D vibrational motion and two ground state hyperfine levels of a trapped ion, Under particular conditions this entanglement depends on the parity of the total initial vibrational quanta. We study the robustness of this quantum coherence effect with respect to the presence of non-dissipative sources of decoherence, and of an imperfect initial state preparation.Comment: 13 pages, 5 figure

    Non-Markovian dynamics of a qubit

    Get PDF
    In this paper we investigate the non-Markovian dynamics of a qubit by comparing two generalized master equations with memory. In the case of a thermal bath, we derive the solution of the post-Markovian master equation recently proposed in Ref. [A. Shabani and D.A. Lidar, Phys. Rev. A {\bf 71}, 020101(R) (2005)] and we study the dynamics for an exponentially decaying memory kernel. We compare the solution of the post-Markovian master equation with the solution of the typical memory kernel master equation. Our results lead to a new physical interpretation of the reservoir correlation function and bring to light the limits of usability of master equations with memory for the system under consideration.Comment: Replaced with published version (minor changes

    Phenomenological memory-kernel master equations and time-dependent Markovian processes

    Get PDF
    Do phenomenological master equations with memory kernel always describe a non-Markovian quantum dynamics characterized by reverse flow of information? Is the integration over the past states of the system an unmistakable signature of non-Markovianity? We show by a counterexample that this is not always the case. We consider two commonly used phenomenological integro-differential master equations describing the dynamics of a spin 1/2 in a thermal bath. By using a recently introduced measure to quantify non-Markovianity [H.-P. Breuer, E.-M. Laine, and J. Piilo, Phys. Rev. Lett. 103, 210401 (2009)] we demonstrate that as far as the equations retain their physical sense, the key feature of non-Markovian behavior does not appear in the considered memory kernel master equations. Namely, there is no reverse flow of information from the environment to the open system. Therefore, the assumption that the integration over a memory kernel always leads to a non-Markovian dynamics turns out to be vulnerable to phenomenological approximations. Instead, the considered phenomenological equations are able to describe time-dependent and uni-directional information flow from the system to the reservoir associated to time-dependent Markovian processes.Comment: 5 pages, no figure
    corecore