9 research outputs found

    Mechanisms for the Evolution of a Derived Function in the Ancestral Glucocorticoid Receptor

    Get PDF
    Understanding the genetic, structural, and biophysical mechanisms that caused protein functions to evolve is a central goal of molecular evolutionary studies. Ancestral sequence reconstruction (ASR) offers an experimental approach to these questions. Here we use ASR to shed light on the earliest functions and evolution of the glucocorticoid receptor (GR), a steroid-activated transcription factor that plays a key role in the regulation of vertebrate physiology. Prior work showed that GR and its paralog, the mineralocorticoid receptor (MR), duplicated from a common ancestor roughly 450 million years ago; the ancestral functions were largely conserved in the MR lineage, but the functions of GRs—reduced sensitivity to all hormones and increased selectivity for glucocorticoids—are derived. Although the mechanisms for the evolution of glucocorticoid specificity have been identified, how reduced sensitivity evolved has not yet been studied. Here we report on the reconstruction of the deepest ancestor in the GR lineage (AncGR1) and demonstrate that GR's reduced sensitivity evolved before the acquisition of restricted hormone specificity, shortly after the GR–MR split. Using site-directed mutagenesis, X-ray crystallography, and computational analyses of protein stability to recapitulate and determine the effects of historical mutations, we show that AncGR1's reduced ligand sensitivity evolved primarily due to three key substitutions. Two large-effect mutations weakened hydrogen bonds and van der Waals interactions within the ancestral protein, reducing its stability. The degenerative effect of these two mutations is extremely strong, but a third permissive substitution, which has no apparent effect on function in the ancestral background and is likely to have occurred first, buffered the effects of the destabilizing mutations. Taken together, our results highlight the potentially creative role of substitutions that partially degrade protein structure and function and reinforce the importance of permissive mutations in protein evolution

    Embryonic diapause in the elasmobranchs

    Get PDF
    Embryonic diapause is a temporary suspension of development at any stage of embryogenesis, which prolongs the gestation period, allowing parturition to occur in conditions that are more suitable for newborns. This reproductive trait is widespread among all vertebrates, including elasmobranchs. Although it has only been confirmed in two elasmobranchs (Rhizoprionodon taylori and Dasyatis say), evidence indicates that at least 14 species of rays and two sharks undergo diapause, suggesting that this form of reproduction exists within a wide range of elasmobranch reproductive modes, including lecithotrophs and matrotrophs. Where it has been studied, embryogenesis is arrested at the blastodisc stage and preserved in the uterus for periods from four to 10 months. There are still many questions that remain unanswered concerning the knowledge on the biology of most diapausing species but it is clear that species benefit differently from this reproductive trait. As in other vertebrates, it is likely that environmental cues and hormones (especially progesterone and prolactin) are involved in the control of diapause in elasmobranchs, however rigorous testing of current hypothesis remains to be carried out

    Movement of bonnetheads, Sphyrna tiburo, as a response to salinity change in a Florida estuary

    No full text
    The movement of bonnetheads, Sphyrna tiburo, within an estuarine system on the Gulf of Mexico coast of Florida was examined to define response to salinity change. Shark presence and movements were evaluated by acoustic monitoring and gillnet sampling. Acoustic monitoring data were used to investigate active selection of different zones within the estuary based on differences in salinity among zones. Sharks were monitored for 187 days in 2003 and 217 days in 2004 in salinities ranging from 11.0 to 31.0 ppt in 2003 and 15.8 to 34.6 ppt in 2004. Monitoring data supported the hypothesis that salinity played a role in the distribution and movement of S. tiburo. Catch per unit effort (CPUE) data obtained from gillnet sampling from 1995 to 2004 were examined to determine affinity or avoidance of specific salinities within the study site as calculated using an electivity index. Electivity analysis showed almost no affinity or avoidance for specific salinity values. The difference in results between the CPUE and acoustic monitoring in relation to the potential effects of salinity likely relate to the nature of the data, with acoustic monitoring providing continuous data and CPUE providing snapshot location data. The results of this study suggest that although S. tiburo are collected within a wide range of salinity levels, salinity may affect movement and distribution. Salinity effects may be more pronounced during periods of prolonged and/or large changes in salinity as detected by long-term monitoring

    Deconstructing the Chlamydial Cell Wall

    No full text
    The evolutionary separated Gram-negative Chlamydiales show a biphasic life cycle and replicate exclusively within eukaryotic host cells. Members of the genus Chlamydia are responsible for many acute and chronic diseases in humans, and Chlamydia-related bacteria are emerging pathogens. We revisit past efforts to detect cell wall material in Chlamydia and Chlamydia-related bacteria in the context of recent breakthroughs in elucidating the underlying cellular and molecular mechanisms of the chlamydial cell wall biosynthesis. In this review, we also discuss the role of cell wall biosynthesis in chlamydial FtsZ-independent cell division and immune modulation. In the past, penicillin susceptibility of an invisible wall was referred to as the "chlamydial anomaly." In light of new mechanistic insights, chlamydiae may now emerge as model systems to understand how a minimal and modified cell wall biosynthetic machine supports bacterial cell division and how cell wall-targeting beta-lactam antibiotics can also act bacteriostatically rather than bactericidal. On the heels of these discussions, we also delve into the effects of other cell wall antibiotics in individual chlamydial lineages
    corecore