12 research outputs found

    Neoproterozoic to Cambrian granitoids of northern Mozambique and Dronning Maud Land Antarctica.

    Get PDF
    第2回極域科学シンポジウム/第31回極域地学シンポジウム 11月17日(木) 国立極地研究所 2階大会議

    Terrane correlation between Antarctica, Mozambique and Sri Lanka; comparisons of geochronology, lithology, structure and metamorphism and possible implications for the geology of southern Africa and Antarctica

    Get PDF
    Analysis of new lithological, structural, metamorphic and geochronological data from extensive mapping in Mozambique permits recognition of two distinct crustal blocks separated by the Lurio Belt shear zone. Extrapolation of the Mozambique data to adjacent areas in Sri Lanka and Dronning Maud Land, Antarctica permits the recognition of similar crustal blocks and allows the interpretation that the various blocks in Mozambique, Sri Lanka and Antarctica were once part of a mega-nappe, forming part of northern Gondwana, which was thrust-faulted c. 600 km over southern Gondwana during amalgamation of Gondwana at c. 590-550 Ma. The data suggest a deeper level of erosion in southern Africa compared with Antarctica. It is possible that this thrust domain extends, through the Zambezi Belt or Valley, as far west as the Damara Orogen in Namibia with the Naukluft nappes in Namibia, the Makuti Group, the Masoso Suite in the Rushinga area and the Urungwe klippen in northern Zimbabwe, fitting the mega-nappe pattern. Erosional products of the mountain belt are now represented by 700-400 Ma age detrital zircons present in the various sandstone formations of the Transantarctic Mountains, their correlatives in Australia, as well as the Urfjell Group (western Dronning Maud Land) and probably the Natal Group in South Africa

    The geology and geochemistry of the East African Orogen in Northeastern Mozambique

    Get PDF
    The geology of northeastern Mozambique has been remapped at 1:250 000 scale. Proterozoic rocks, which make up the bulk of the area, form a number of gneiss complexes defined on the basis of their lithologies, metamorphic grade, structures, tectonic relationships and ages. The gneiss complexes, which contain both ortho- and paragneisses, range from Palaeo- to Neoproterozoic in age, and were juxtaposed along tectonic contacts during the late Neoproterozoic to Cambrian Pan-African Orogeny. In this paper we describe the geological evolution of the terranes north of the Lurio Belt, a major tectonic boundary which separates the complexes described in this paper from the Nampula Complex to the south. The Marrupa, Nairoto and Meluco Complexes are dominated by orthogneisses of felsic to intermediate compositions. Granulitic rocks, including charnockites, are present in the Unango, M’Sawize, Xixano and Ocua Complexes (the last forms the centre of the Lurio Belt). The Neoproterozoic Geci and Txitonga Groups are dominated by metasupracrustal rocks at low metamorphic grades and have been tectonically juxtaposed with the Unango Complex. Geochemical data integrate and support a model of terrain assembly in northeast Mozambique, which is largely published and mainly derived from our new geochronological, lithostratigraphic and structural work. This model shows the contrast between the mainly felsic lower tectonostratigraphic levels (Unango, Marrupa, Nairoto and Meluco Complexes) and the significantly more juvenile overlying complexes (Xixano, Muaquia, M’Sawize, Lalamo and Montepuez Complexes), which were all assembled during the Cambrian Pan-African orogeny. The juxtaposed terranes were stitched by several suites of Cambrian late- to post-tectonic granitoids

    Mesoproterozoic geology of the Nampula Sub-province, northern Mozambique

    Get PDF
    The Nampula Subprovince (NSP) of the Mozambique Metamorphic Province covers over 100 000 km2, making it the largest Mesoproterozoic crustal block in northern Mozambique and an important component of the Neoproterozoic to Cambrian (Pan-African) East African Orogen. It is bounded in the north by the WSW–ENE trending Lúrio Belt. The oldest rocks (Mocuba Suite) are a polydeformed sequence of upper amphibolite grade layered grey gneisses and migmatites associated with intrusive TTG and granitic orthogneisses. A sample of banded gneiss, interpreted as a meta-volcanic rock, yielded a U-Pb SHRIMP zircon date of 1127 ± 9 Ma. Metamorphic rims, dated at ca. 1090 Ma, probably grew during the emplacement of a later magmatic phase, represented by the tonalitic Rapale orthogneiss, two samples of which were dated at 1095 ± 19 and 1091 ± 14 Ma respectively. The earliest (D1) deformation and associated amphibolite-grade metamorphism and migmatisation recognised, took place at approximately this time. The geochemistry of these rocks suggests that they were generated in a juvenile, island-arc setting. The Mocuba Suite is interlayered with extensive belts of meta-pelitic/psammitic, calc-silicate and felsic to mafic meta-volcanic supracrustal gneisses termed the Molòcué Group. U-Pb data from detrital zircons from a calc-silicate paragneiss gave a bimodal age distribution at ca. 1100 and 1800 Ma, showing derivation from rocks of the same age as the Mocuba Suite and a Palaeoproterozoic source region. The age of the Molòcué Group has been directly determined by dates of 1092 ± 13 and 1090 ± 22 Ma, obtained from two samples of the leucocratic (meta-acid volcanic?) Mamala gneiss, one of its major constituent formations. The final phase of Mesoproterozoic activity is represented by voluminous plutons and sheet-like bodies of foliated megacrystic granite, augen gneiss and granitic orthogneiss (Culicui Suite) which have A-type granite geochemical characteristics, and were interpreted to have been generated in a late tectonic, extensional setting. Three samples from the suite gave identical ages of ca. 1075 Ma. The NSP was extensively re-worked during the major (D2: Pan-African) collision orogen in Late Neoproterozoic to Cambrian times, when the major regional fabrics were imposed upon the Mesoproterozoic rocks under amphibolite grade metamorphic conditions. In the dated samples, this major orogenic event is represented by metamorphic zircon rims and lower intercept ages of ca 550 to 500 Ma. The Nampula Subprovince probably made up the NE part of a major Mesoproterozoic mobile belt which was accreted to the old cratonic nucleus of the Kalahari craton (combined Archaean Kaapvaal- Zimbabwe-Grunehogna cratons and various Palaeoproterozoic blocks). This mobile belt, fragmented by Gondwana break-up, consisted of (from west to east) the Namaqua-Natal belt (South Africa), the Falkland microplate, the Haag Nunatak block (West Antarctica) and the Maudheim (East Antarctica)(Jacobs et al., 2008). The belt, with a restored length of over 3000 km is a major part of a worldwide in a system of “Grenvillian” orogens associated with the amalgamation of the supercontinent of Rodinia (e.g. Li et al., 2008)

    Poor health, low mortality? Paradox found among immigrants in England and Wales

    Get PDF
    The 'healthy immigrant effect' and 'migrant mortality advantage' describe the better health and lower mortality of international immigrants as compared with the native‐born populations of high‐income countries. However, a growing body of evidence suggests that it is much more common to observe low mortality among immigrants than it is good health, pointing to the existence of a potential paradox that mirrors the well‐known gender paradox in health and mortality. To investigate this, we used the Office for National Statistics Longitudinal Study, a large‐scale representative 1% sample of the England and Wales resident population comprising linked individual‐level health, mortality, and socio‐demographic data. We compared health and mortality within and across major immigrant groups over 20 years using logistic regression for health and discrete‐time survival analysis for mortality, both before and after adjusting for socio‐demographic factors. Of the eight origin subgroups studied, we found persistent evidence of a health‐mortality paradox within three: men and women from India, Pakistan and Bangladesh, and the Caribbean. We discuss potential explanations and implications of this paradox and suggest that decision makers need to react to help these subgroups preserve their health in order to delay the onset of limiting illnesses and emergence of this paradox
    corecore