183 research outputs found

    Novel role for polycystin-1 in modulating cell proliferation through calcium oscillations in kidney cells

    Get PDF
    Objectives: Polycystin-1 (PC1), a signalling receptor regulating Ca2+-permeable cation channels, is mutated in autosomal dominant polycystic kidney disease, which is typically characterized by increased cell proliferation. However, the precise mechanisms by which PC1 functions on Ca2+ homeostasis, signalling and cell proliferation remain unclear. Here, we investigated the possible role of PC1 as a modulator of non-capacitative Ca2+ entry (NCCE) and Ca2+ oscillations, with downstream effects on cell proliferation. Results and discussion: By employing RNA interference, we show that depletion of endogenous PC1 in HEK293 cells leads to an increase in serum-induced Ca2+ oscillations, triggering nuclear factor of activated T cell activation and leading to cell cycle progression. Consistently, Ca2+ oscillations and cell proliferation are increased in PC1-mutated kidney cystic cell lines, but both abnormal features are reduced in cells that exogenously express PC1. Notably, blockers of the NCCE pathway, but not of the CCE, blunt abnormal oscillation and cell proliferation. Our study therefore provides the first demonstration that PC1 modulates Ca2+ oscillations and a molecular mechanism to explain the association between abnormal Ca2+ homeostasis and cell proliferation in autosomal dominant polycystic kidney disease

    FAP- Anion Ionic Liquids Used in the Lubrication of a Steel–Steel Contact

    Get PDF
    This study compares the tribological behavior of two ionic liquids ([BMP][FAP] and [(NEMM)MOE][FAP]) used as oil additive for the lubrication of a steel–steel contact. Friction and wear experiments were performed using a HFRR test machine. Friction coefficient and electrical contact resistance were measured during the tests, and the wear surface was analyzed by confocal microscopy and XPS. The tribological results showed that both ionic liquids used as additive decrease friction and wear but the [BMP][FAP] had a better performance than the [(NEMM)MOE][FAP] due to its higher reactivity with the steel

    Tribological performance of tributylmethylammonium bis(trifluoromethylsulfonyl)amide as neat lubricant and as an additive in a polar oil

    Get PDF
    The ionic liquid (IL) tributylmethylammonium bis(trifluoromethylsulfonyl)amide ([N4441][NTf2]) was used as neat lubricant and as an additive (1.5 wt%) in a polar oil to study its friction and wear reducing properties. Tribological tests were completed for 90 minutes at room temperature and 100 °C in a reciprocating configuration at loads of 30 and 70 N, 10 Hz-frequency, and 4 mm stroke length. Wear volume was measured by confocal microscopy and the surface-IL interaction determined by XPS. The main findings were that neat IL showed the best tribological behavior; the IL-containing mixture behaved similar to the base oil regarding friction, however outperformed the antiwear behavior of the base oil under higher temperature; surface-IL chemical interaction was found mainly at 100 °C

    Role of mid-gap states in charge transport and photoconductivity in semiconductor nanocrystal films

    Get PDF
    Colloidal semiconductor nanocrystals have attracted significant interest for applications in solution-processable devices such as light-emitting diodes and solar cells. However, a poor understanding of charge transport in nanocrystal assemblies, specifically the relation between electrical conductance in dark and under light illumination, hinders their technological applicability. Here we simultaneously address the issues of 'dark' transport and photoconductivity in films of PbS nanocrystals, by incorporating them into optical field-effect transistors in which the channel conductance is controlled by both gate voltage and incident radiation. Spectrally resolved photoresponses of these devices reveal a weakly conductive mid-gap band that is responsible for charge transport in dark. The mechanism for conductance, however, changes under illumination when it becomes dominated by band-edge quantized states. In this case, the mid-gap band still has an important role as its occupancy (tuned by the gate voltage) controls the dynamics of band-edge charges

    Unravelling a simple method for the low temperature synthesis of silicon nanocrystals and monolithic nanocrystalline thin films

    Get PDF
    In this work, we present new results on the plasma processing and structure of hydrogenated polymorphous silicon (pm-Si:H) thin films. pm-Si:H thin films consist of a low volume fraction of silicon nanocrystals embedded in a silicon matrix with medium range order, and they possess this morphology as a significant contribution to their growth comes from the impact on the substrate of silicon clusters and nanocrystals synthesized in the plasma. Quadrupole mass spectrometry, ion flux measurements, and material characterization by transmission electron microscopy (TEM) and atomic force microscopy all provide insight on the contribution to the growth by silicon nanocrystals during PECVD deposition. In particular, cross-section TEM measurements show for the first time that the silicon nanocrystals are uniformly distributed across the thickness of the pm-Si:H film. Moreover, parametric studies indicate that the best pm-Si:H material is obtained at the conditions after the transition between a pristine plasma and one containing nanocrystals, namely a total gas pressure around 2 Torr and a silane to hydrogen ratio between 0.05 to 0.1. From a practical point of view these conditions also correspond to the highest deposition rate achievable for a given RF power and silane flow rate.ope
    corecore