9 research outputs found
OCCURRENCE OF TOMATO LEAF CURL NEW DELHI VIRUS INFECTING ZUCCHINI IN SARDINIA (ITALY)
Tomato leaf curl New Delhi virus (ToLCNDV, genus Begomovirus) is a bipartite, circular, ssDNA virus, able to infect species within the Cucurbitaceae and Solanaceae. In August 2016, field observations carried out in Sardinia (Italy) highlighted in one location (Decimoputzu, CA) some plants of zucchini squash (Cucurbita pepo L.) showing a systemic disease never observed before, even in a previous survey (end-June 2016) on cucurbit viruses
First Report of Tomato Leaf Curl New Delhi Virus Causing Yellow Leaf Curl of Pepper in Europe
Tomato leaf curl New Delhi virus (ToLCNDV), a bipartite begomovirus (family Geminiviridae) with two circular ssDNA genome components (DNA-A and DNA-B), is transmitted in a circulative nonpropagative manner by the whitefly Bemisia tabaci (Gennadius). Although it was first reported in Asia on tomato and other solanaceous crops such as eggplant, potato, and chilli pepper in the Mediterranean basin, this virus was mainly detected on cucurbits and only sporadically on tomato and on two wild solanaceous species, Datura stramonium L. and Solanum nigrum L. (Juárez et al. 2019). In 2018, separate surveys were carried out in protected cultivations of sweet pepper (Capsicum annuum L.) in two Italian regions: Lazio and Campania. The greenhouses were in areas with high density of B. tabaci and where ToLCNDV outbreaks occurred on cucurbits since 2016 (Panno et al. 2019). Some plants showing symptoms of yellowing and leaf curling were found in both regions, whereas fruit symptoms were neither observed nor reported by farmers. This disease syndrome, known as yellow leaf curl disease (YLCD), can be caused in pepper by several begomoviruses, as reported recently in a review listing the viruses causing YLCD in peppers in Thailand (Chiemsombat et al. 2018). Symptomatic leaves were collected during late summer 2018 from different pepper plants as well as from the neighboring zucchini cultivations, showing the typical symptomatology induced by ToLCNDV. Total DNA was extracted (DNeasy Plant Mini kit, Qiagen, Germany), and the presence of ToLCNDV was ascertained by PCR with the specific primers ToLCNDV-CP1 and ToLCNDV-CP2 (Panno et al. 2019; Parrella et al. 2018). ToLCNDV infection was further ascertained in three symptomatic leaf samples from Campania by using specific ToLCNDV ImmunoStrips (Agdia, Elkhart, IN). Successively, one symptomatic pepper sample from each greenhouse was selected and amplified by rolling circle amplification technique (RCA; Inoue-Nagata et al. 2004). The amplicons were cloned, and the DNA-A and DNA-B were full-length sequenced. The sequences were deposited in GenBank NCBI database (MK732932 DNA-A and MK732933 DNA-B, pepper sample from Campania; MK756106 DNA-A and MK756107 DNA-B, pepper sample from Lazio). The RCA analysis was performed also on a ToLCNDV-infected zucchini sample collected in the same area in Lazio region (MK756108 DNA-A and MK756109 DNA-B). The analysis of the ToLCNDV sequences showed a low level of genetic variability between the two pepper isolates from Lazio and Campania regions (rate of substitutions: 0.016 for DNA-A and 0.023 for DNA-B). A high genetic similarity was recorded between the zucchini isolate and both the pepper isolates from Campania (0.019 for DNA-A and 0.023 for DNA-B) and Lazio (0.003 for both DNA-A and B). The three characterized isolates showed a high sequence homology also with both the DNA-A (MH577751 from a melon isolate) and DNA-B (MH577673 from a zucchini isolate) of the ToLCNDV-ES genotype (Fortes et al. 2016), which differed in 15 and 13 nucleotide substitutions from pepper sample from Lazio, 29 and 51 substitutions from Campania sample, and 10 and 5 substitutions from zucchini sample. High homology was also identified compared with the other Spanish isolates collected since the first appearance of the virus (2014) and to the Tunisian (2015) and Moroccan (2018) isolates, confirming the hypothesis that the Mediterranean population of ToLCNDV is highly conserved (Juárez et al. 2019). To our knowledge, this is the first report of ToLCNDV infection on pepper in Europe and indicates that sweet pepper could also act as a reservoir of the virus for further spread to other solanaceous plants and cucurbits
Phytosanitary evaluation of olive germplasm in Albania
A survey on viruses was carried out in 2008 in the main olive-growing areas of Albania (Kruja, Sauk and Vlora). Fifty samples from 14 local and 2 exotic olive cultivars were collected from 10 commercial orchards and one collection field and inspected for Arabis mosaic virus (ArMV), Cherry leaf roll virus (CLRV), Strawberry latent ringspot virus (SLRV), Olive latent virus 1 (OLV-1), Olive leaf yellowing-associated virus (OLYaV), Cucumber mosaic virus (CMV), Olive latent virus-2 (OLV-2) and Tobacco necrosis virus strain D (TNV-D) by a one-step RT-PCR assay using virus-specifi c primers. None of these viruses were found in the source plants except SLRSV and OLYaV, which were detected in a ‘K. M. Berat’ olive tree grown in the collection field. These findings are important because the incidence of olive virus diseases is low in Albania but high in other Mediterranean countries. Thus, all efforts should be to directed to maintaining the Albanian olive germplasm pathogen-free and in the best agronomical and phytosanitary condition possible
Molecular variability of watermelon mosaic virus isolates from Argentina
Watermelon mosaic virus (WMV) is an economically important virus of cucurbit crops in Argentina. The available information on genetic variability must be continuously updated. In this study, we assessed the molecular variability of WMV isolates in Argentina based on the partial sequences of the NIb-CP region and compared them with isolates previously reported from around the world. Forty-six WMV isolates were obtained from naturally infected cucurbit crops collected from 10 provinces between 2011 and 2018. At the molecular level, WMV isolates were grouped into three distinct major phylogenetic groups based on genetic distance. Majority of the Argentine isolates belonged to the emerging group (G3), whereas one isolate was included in G1 and another cluster in G2. G3 was further divided into 5 subgroups, named EM1, EM2, EM3, EM4, and a new group “EMArg”, composed exclusively of Argentine isolates with high bootstrap support and high level of significance. Tajima’s D and Fu were significantly negative for G3 and EMArg, indicating that the population of this subgroup has recently expanded. AMOVA analysis showed that the isolates was not well correlated with their geographic origin. The fixation index (FST) value between the WMV isolates from the different provinces in Argentina was lower than 0.33, indicating a relatively frequent gene flow between provinces. In every group, the predominant evolutionary pressure was negative with a mean dN/dS < 1, suggesting a slow replacement fixation rate. One recombination event was detected involving isolates of EM2 cluster from Argentina.Fil: Pozzi, Elizabeth Alicia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Córdoba. Estación Experimental Agropecuaria Marcos Juárez; ArgentinaFil: Perotto, Maria Cecilia. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigaciones Agropecuarias. Unidad de Fitopatología y Modelización Agrícola - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Unidad de Fitopatología y Modelización Agrícola; ArgentinaFil: Bertin, S.. Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria; ItaliaFil: Manglli, A.. Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria; ItaliaFil: Luciani, Cecilia Elizabeth. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigaciones Agropecuarias. Unidad de Fitopatología y Modelización Agrícola - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Unidad de Fitopatología y Modelización Agrícola; ArgentinaFil: Conci, Vilma Cecilia. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigaciones Agropecuarias. Unidad de Fitopatología y Modelización Agrícola - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Unidad de Fitopatología y Modelización Agrícola; ArgentinaFil: Tomassoli, L.. Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria; Itali