4 research outputs found

    Identification of tumor-associated cassette exons in human cancer through EST-based computational prediction and experimental validation

    Get PDF
    Background: Many evidences report that alternative splicing, the mechanism which produces mRNAs and proteins with different structures and functions from the same gene, is altered in cancer cells. Thus, the identification and characterization of cancer-specific splice variants may give large impulse to the discovery of novel diagnostic and prognostic tumour biomarkers, as well as of new targets for more selective and effective therapies. Results: We present here a genome-wide analysis of the alternative splicing pattern of human genes through a computational analysis of normal and cancer-specific ESTs from seventeen anatomical groups, using data available in AspicDB, a database resource for the analysis of alternative splicing in human. By using a statistical methodology, normal and cancer-specific genes, splice sites and cassette exons were predicted in silico. The condition association of some of the novel normal/tumoral cassette exons was experimentally verified by RT-qPCR assays in the same anatomical system where they were predicted. Remarkably, the presence in vivo of the predicted alternative transcripts, specific for the nervous system, was confirmed in patients affected by glioblastoma. Conclusion: This study presents a novel computational methodology for the identification of tumor-associated transcript variants to be used as cancer molecular biomarkers, provides its experimental validation, and reports specific biomarkers for glioblastoma

    A platform independent RNA-Seq protocol for the detection of transcriptome complexity

    Get PDF
    Background: Recent studies have demonstrated an unexpected complexity of transcription in eukaryotes. The majority of the genome is transcribed and only a little fraction of these transcripts is annotated as protein coding genes and their splice variants. Indeed, most transcripts are the result of antisense, overlapping and non-coding RNA expression. In this frame, one of the key aims of high throughput transcriptome sequencing is the detection of all RNA species present in the cell and the first crucial step for RNA-seq users is represented by the choice of the strategy for cDNA library construction. The protocols developed so far provide the utilization of the entire library for a single sequencing run with a specific platform. Results: We set up a unique protocol to generate and amplify a strand-specific cDNA library representative of all RNA species that may be implemented with all major platforms currently available on the market (Roche 454, Illumina, ABI/SOLiD). Our method is reproducible, fast, easy-to-perform and even allows to start from low input total RNA. Furthermore, we provide a suitable bioinformatics tool for the analysis of the sequences produced following this protocol. Conclusion: We tested the efficiency of our strategy, showing that our method is platform-independent, thus allowing the simultaneous analysis of the same sample with different NGS technologies, and providing an accurate quantitative and qualitative portrait of complex whole transcriptomes
    corecore