33 research outputs found

    Inhibition of the mechano-enzymatic amyloidogenesis of transthyretin: role of ligand affinity, binding cooperativity and occupancy of the inner channel

    Get PDF
    Dissociation of the native transthyretin (TTR) tetramer is widely accepted as the critical step in TTR amyloid fibrillogenesis. It is modelled by exposure of the protein to non-physiological low pH in vitro and is inhibited by small molecule compounds, such as the drug tafamidis. We have recently identified a new mechano-enzymatic pathway of TTR fibrillogenesis in vitro, catalysed by selective proteolytic cleavage, which produces a high yield of genuine amyloid fibrils. This pathway is efficiently inhibited only by ligands that occupy both binding sites in TTR. Tolcapone, which is bound with similar high affinity in both TTR binding sites without the usual negative cooperativity, is therefore of interest. Here we show that TTR fibrillogenesis by the mechano-enzymatic pathway is indeed more potently inhibited by tolcapone than by tafamidis but neither, even in large molar excess, completely prevents amyloid fibril formation. In contrast, mds84, the prototype of our previously reported bivalent ligand TTR 'superstabiliser' family, is notably more potent than the monovalent ligands and we show here that this apparently reflects the critical additional interactions of its linker within the TTR central channel. Our findings have major implications for therapeutic approaches in TTR amyloidosis

    Amyloid Formation by Globular Proteins: The Need to Narrow the Gap Between in Vitro and in Vivo Mechanisms

    Get PDF
    The globular to fibrillar transition of proteins represents a key pathogenic event in the development of amyloid diseases. Although systemic amyloidoses share the common characteristic of amyloid deposition in the extracellular matrix, they are clinically heterogeneous as the affected organs may vary. The observation that precursors of amyloid fibrils derived from circulating globular plasma proteins led to huge efforts in trying to elucidate the structural events determining the protein metamorphosis from their globular to fibrillar state. Whereas the process of metamorphosis has inspired poets and writers from Ovid to Kafka, protein metamorphism is a more recent concept. It is an ideal metaphor in biochemistry for studying the protein folding paradigm and investigating determinants of folding dynamics. Although we have learned how to transform both normal and pathogenic globular proteins into fibrillar polymers in vitro, the events occurring in vivo, are far more complex and yet to be explained. A major gap still exists between in vivo and in vitro models of fibrillogenesis as the biological complexity of the disease in living organisms cannot be reproduced at the same extent in the test tube. Reviewing the major scientific attempts to monitor the amyloidogenic metamorphosis of globular proteins in systems of increasing complexity, from cell culture to human tissues, may help to bridge the gap between the experimental models and the actual pathological events in patients

    Plasminogen activation triggers transthyretin amyloidogenesis in vitro

    Get PDF
    Systemic amyloidosis is a usually fatal disease caused by extracellular accumulation of abnormal protein fibers, amyloid fibrils, derived by misfolding and aggregation of soluble globular plasma protein precursors. Both WT and genetic variants of the normal plasma protein transthyretin (TTR) form amyloid, but neither the misfolding leading to fibrillogenesis nor the anatomical localization of TTR amyloid deposition are understood. We have previously shown that, under physiological conditions, trypsin cleaves human TTR in a mechano-enzymatic mechanism that generates abundant amyloid fibrils in vitro. In sharp contrast, the widely used in vitro model of denaturation and aggregation of TTR by prolonged exposure to pH 4.0 yields almost no clearly defined amyloid fibrils. However, the exclusive duodenal location of trypsin means that this enzyme cannot contribute to systemic extracellular TTR amyloid deposition in vivo. Here, we therefore conducted a bioinformatics search for systemically active tryptic proteases with appropriate tissue distribution, which unexpectedly identified plasmin as the leading candidate. We confirmed that plasmin, just as trypsin, selectively cleaves human TTR between residues 48 and 49 under physiological conditions in vitro. Truncated and full-length protomers are then released from the native homotetramer and rapidly aggregate into abundant fibrils indistinguishable from ex vivo TTR amyloid. Our findings suggest that physiological fibrinolysis is likely to play a critical role in TTR amyloid formation in vivo. Identification of this surprising intersection between two hitherto unrelated pathways opens new avenues for elucidating the mechanisms of TTR amyloidosis, for seeking susceptibility risk factors, and for therapeutic innovation

    A specific nanobody prevents amyloidogenesis of D76N \u3b22-microglobulin in vitro and modifies its tissue distribution in vivo

    Get PDF
    Systemic amyloidosis is caused by misfolding and aggregation of globular proteins in vivo for which effective treatments are urgently needed. Inhibition of protein self-aggregation represents an attractive therapeutic strategy. Studies on the amyloidogenic variant of \u3b22-microglobulin, D76N, causing hereditary systemic amyloidosis, have become particularly relevant since fibrils are formed in vitro in physiologically relevant conditions. Here we compare the potency of two previously described inhibitors of wild type \u3b22-microglobulin fibrillogenesis, doxycycline and single domain antibodies (nanobodies). The \u3b22-microglobulin -binding nanobody, Nb24, more potently inhibits D76N \u3b22-microglobulin fibrillogenesis than doxycycline with complete abrogation of fibril formation. In \u3b22-microglobulin knock out mice, the D76N \u3b22-microglobulin/ Nb24 pre-formed complex, is cleared from the circulation at the same rate as the uncomplexed protein; however, the analysis of tissue distribution reveals that the interaction with the antibody reduces the concentration of the variant protein in the heart but does not modify the tissue distribution of wild type \u3b22-microglobulin. These findings strongly support the potential therapeutic use of this antibody in the treatment of systemic amyloidosis

    Short-Chain Alkanethiol Coating for Small-Size Gold Nanoparticles Supporting Protein Stability

    Get PDF
    The application of gold nanoparticles (AuNPs) is emerging in many fields, raising the need for a systematic investigation on their safety. In particular, for biomedical purposes, a relevant issue are certainly AuNP interactions with biomolecules, among which proteins are the most abundant ones. Elucidating the effects of those interactions on protein structure and on nanoparticle stability is a major task towards understanding their mechanisms at a molecular level. We investigated the interaction of the 3-mercaptopropionic acid coating of AuNPs (MPA-AuNPs) with β2-microglobulin (β2m), which is a paradigmatic amyloidogenic protein. To this aim, we prepared and characterized MPA-AuNPs with an average diameter of 3.6 nm and we employed NMR spectroscopy and fluorescence spectroscopy to probe protein structure perturbations. We found that β2m interacts with MPA-AuNPs through a highly localized patch maintaining its overall native structure with minor conformational changes. The interaction causes the reversible precipitation of clusters that can be easily re-dispersed through brief sonication

    RMSD values (Å) for the 3D structural comparisons of the D-to-N mutants with wt and D76N β2m (pdb code 2YXF and 4FXL, respectively).

    No full text
    <p>* Atoms belonging to AB loops were excluded in this calculation</p><p>The number of Cα atoms used for each calculation is reported in parenthesis.</p

    Thermodynamic stability of β2m D-to-N variants.

    No full text
    <p>(A) Comparison of the CD spectra of wt β2m and D-to-N variants. (B) Thermal stability assessed by CD experiments in the far-UV region. (C) Tm values are determined as the minima of the first derivative of the unfolding profiles, each thermal unfolding was repeated four times. Standard deviations were calculated and are shown for each Tm. Arrows highlight graphically the Tm differences.</p

    Aggregation of wt β2m and of D-to-N variants.

    No full text
    <p>Under shaking conditions in physiological buffer, an increase of ThT signal was recorded solely for D76N β2m (red), no signal increase was registered for the wt protein (black) or the other variants, whose signals are comprised in the base line: D34N (brown), D38N (orange), D53N (blue), D59N (grey), D96N (pink), D98N (green).</p
    corecore