2,850 research outputs found
Fluctuation induced interactions between domains in membranes
We study a model lipid bilayer composed of a mixture of two incompatible
lipid types which have a natural tendency to segregate in the absence of
membrane fluctuations. The membrane is mechanically characterized by a local
bending rigidity which varies with the average local lipid
composition . We show, in the case where varies weakly with
, that the effective interaction between lipids of the same type can
either be everywhere attractive or can have a repulsive component at
intermediate distances greater than the typical lipid size. When this
interaction has a repulsive component, it can prevent macro-phase separation
and lead to separation in mesophases with a finite domain size. This effect
could be relevant to certain experimental and numerical observations of
mesoscopic domains in such systems.Comment: 9 pages RevTex, 1 eps figur
Graphene-mediated exchange coupling between a molecular spin and magnetic substrates
Using first-principles calculations we demonstrate sizable exchange coupling between a magnetic molecule and a magnetic substrate via a graphene layer. As a model system we consider cobaltocene (CoCp2) adsorbed on graphene deposited on Ni(111). We find that the magnetic coupling is antiferromagnetic and is influenced by the molecule structure, the adsorption geometry, and the stacking of graphene on the substrate. We show how the coupling can be tuned by the intercalation of a magnetic monolayer, such as Fe or Co, between graphene and Ni(111). We identify the leading mechanism responsible for the coupling to be the spatial and energy matching of the frontier orbitals of CoCp2 and graphene close to the Fermi level. Graphene plays the role of an electronic decoupling layer while allowing effective spin communication between molecule and substrate
Variational approach for electrolyte solutions: from dielectric interfaces to charged nanopores
A variational theory is developed to study electrolyte solutions, composed of
interacting point-like ions in a solvent, in the presence of dielectric
discontinuities and charges at the boundaries. Three important and non-linear
electrostatic effects induced by these interfaces are taken into account:
surface charge induced electrostatic field, solvation energies due to the ionic
cloud, and image charge repulsion. Our variational equations thus go beyond the
mean-field theory. The influence of salt concentration, ion valency, dielectric
jumps, and surface charge is studied in two geometries. i) A single neutral
air-water interface with an asymmetric electrolyte. A charge separation and
thus an electrostatic field gets established due to the different image charge
repulsions for coions and counterions. Both charge distributions and surface
tension are computed and compared to previous approximate calculations. For
symmetric electrolyte solutions close to a charged surface, two zones are
characterized. In the first one, with size proportional to the logarithm of the
coupling parameter, strong image forces impose a total ion exclusion, while in
the second zone the mean-field approach applies. ii) A symmetric electrolyte
confined between two dielectric interfaces as a simple model of ion rejection
from nanopores. The competition between image charge repulsion and attraction
of counterions by the membrane charge is studied. For small surface charge, the
counterion partition coefficient decreases with increasing pore size up to a
critical pore size, contrary to neutral membranes. For larger pore sizes, the
whole system behaves like a neutral pore. The prediction of the variational
method is also compared with MC simulations and a good agreement is observed.Comment: This version is accepted for publication in Phys. Rev. E
Interfacial magnetic structure in Fe/NiO(001)
Using nuclear resonant scattering of synchrotron radiation and density functional theory calculations we haveresolved the magnetic properties of the different Fe phases present at the Fe/NiO(001) interface, an epitaxialferromagnetic/antiferromagnetic system. We have detected the presence of an interfacial antiferromagneticFeO-like phase with a significantly increased magnetic moment compared to the case of a sharp interface.Already a few atomic layers above the interface, the Fe atoms have a bulk-like metallic character and the reversalof their magnetization is strongly influenced by the antiferromagnetic layer
On-site correlation in valence and core states of ferromagnetic nickel
We present a method which allows to include narrow-band correlation effects
into the description of both valence and core states and we apply it to the
prototypical case of nickel. The results of an ab-initio band calculation are
used as input mean-field eigenstates for the calculation of self-energy
corrections and spectral functions according to a three-body scattering
solution of a multi-orbital Hubbard hamiltonian. The calculated quasi-particle
spectra show a remarkable agreement with photoemission data in terms of band
width, exchange splitting, satellite energy position of valence states, spin
polarization of both the main line and the satellite of the 3p core level.Comment: 14 pages, 10 PostScript figures, RevTeX, submitted to PR
Mesoscopic models for DNA stretching under force: new results and comparison to experiments
Single molecule experiments on B-DNA stretching have revealed one or two
structural transitions, when increasing the external force. They are
characterized by a sudden increase of DNA contour length and a decrease of the
bending rigidity. It has been proposed that the first transition, at forces of
60--80 pN, is a transition from B to S-DNA, viewed as a stretched duplex DNA,
while the second one, at stronger forces, is a strand peeling resulting in
single stranded DNAs (ssDNA), similar to thermal denaturation. But due to
experimental conditions these two transitions can overlap, for instance for
poly(dA-dT). We derive analytical formula using a coupled discrete worm like
chain-Ising model. Our model takes into account bending rigidity, discreteness
of the chain, linear and non-linear (for ssDNA) bond stretching. In the limit
of zero force, this model simplifies into a coupled model already developed by
us for studying thermal DNA melting, establishing a connexion with previous
fitting parameter values for denaturation profiles. We find that: (i) ssDNA is
fitted, using an analytical formula, over a nanoNewton range with only three
free parameters, the contour length, the bending modulus and the monomer size;
(ii) a surprisingly good fit on this force range is possible only by choosing a
monomer size of 0.2 nm, almost 4 times smaller than the ssDNA nucleobase
length; (iii) mesoscopic models are not able to fit B to ssDNA (or S to ss)
transitions; (iv) an analytical formula for fitting B to S transitions is
derived in the strong force approximation and for long DNAs, which is in
excellent agreement with exact transfer matrix calculations; (v) this formula
fits perfectly well poly(dG-dC) and -DNA force-extension curves with
consistent parameter values; (vi) a coherent picture, where S to ssDNA
transitions are much more sensitive to base-pair sequence than the B to S one,
emerges.Comment: 14 pages, 9 figure
About the strength of correlation effects in the electronic structure of iron
The strength of electronic correlation effects in the spin-dependent
electronic structure of ferromagnetic bcc Fe(110) has been investigated by
means of spin and angle-resolved photoemission spectroscopy. The experimental
results are compared to theoretical calculations within the three-body
scattering approximation and within the dynamical mean-field theory, together
with one-step model calculations of the photoemission process. This comparison
indicates that the present state of the art many-body calculations, although
improving the description of correlation effects in Fe, give too small mass
renormalizations and scattering rates thus demanding more refined many-body
theories including non-local fluctuations.Comment: 4 pages, 4 figure
Quantitative determination of spin-dependent quasiparticle lifetimes and electronic correlations in hcp cobalt
We report on a quantitative investigation of the spin-dependent quasiparticle
lifetimes and electron correlation effects in ferromagnetic hcp Co(0001) by
means of spin and angle-resolved photoemission spectroscopy. The experimental
spectra are compared in detail to state-of-the-art many-body calculations
within the dynamical mean field theory and the three-body scattering
approximation, including a full calculation of the one-step photoemission
process. From this comparison we conclude that although strong local many-body
Coulomb interactions are of major importance for the qualitative description of
correlation effects in Co, more sophisticated many-body calculations are needed
in order to improve the quantitative agreement between theory and experiment,
in particular concerning the linewidths. The quality of the overall agreement
obtained for Co indicates that the effect of non-local correlations becomes
weaker with increasing atomic number
- …