737 research outputs found

    Non-Markovian effect on the quantum discord

    Full text link
    We study the non-Markovian effect on the dynamics of the quantum discord by exactly solving a model consisting of two independent qubits subject to two zero-temperature non-Markovian reservoirs, respectively. Considering the two qubits initially prepared in Bell-like or extended Werner-like states, we show that there is no occurrence of the sudden death, but only instantaneous disappearance of the quantum discord at some time points, in comparison to the entanglement sudden death in the same range of the parameters of interest. It implies that the quantum discord is more useful than the entanglement to describe quantum correlation involved in quantum systems.Comment: 5 pages, 5 figure

    Fine structure of alpha decay in odd nuclei

    Get PDF
    Using an alpha decay level scheme, an explanation for the fine structure in odd nuclei is evidenced by taking into account the radial and rotational couplings between the unpaired nucleon and the core of the decaying system. It is stated that the experimental behavior of the alpha decay fine structure phenomenon is directed by the dynamical characteristics of the system.Comment: 8 pages, 3 figures, REVTex, submitted to Physical Review

    Spin correlations in the electron-doped high-transition-temperature superconductor Nd{2-x}Ce{x}CuO{4+/-delta}

    Full text link
    High-transition-temperature (high-Tc) superconductivity develops near antiferromagnetic phases, and it is possible that magnetic excitations contribute to the superconducting pairing mechanism. To assess the role of antiferromagnetism, it is essential to understand the doping and temperature dependence of the two-dimensional antiferromagnetic spin correlations. The phase diagram is asymmetric with respect to electron and hole doping, and for the comparatively less-studied electron-doped materials, the antiferromagnetic phase extends much further with doping [1, 2] and appears to overlap with the superconducting phase. The archetypical electron-doped compound Nd{2-x}Ce{x}CuO{4\pm\delta} (NCCO) shows bulk superconductivity above x \approx 0.13 [3, 4], while evidence for antiferromagnetic order has been found up to x \approx 0.17 [2, 5, 6]. Here we report inelastic magnetic neutron-scattering measurements that point to the distinct possibility that genuine long-range antiferromagnetism and superconductivity do not coexist. The data reveal a magnetic quantum critical point where superconductivity first appears, consistent with an exotic quantum phase transition between the two phases [7]. We also demonstrate that the pseudogap phenomenon in the electron-doped materials, which is associated with pronounced charge anomalies [8-11], arises from a build-up of spin correlations, in agreement with recent theoretical proposals [12, 13].Comment: 5 pages, 4 figure

    Photodegradation of secondary organic aerosol generated from limonene oxidation by ozone studied with chemical ionization mass spectrometry

    Get PDF
    Photodegradation of secondary organic aerosol (SOA) prepared by ozone-initiated oxidation of D-limonene is studied with an action spectroscopy approach, which relies on detection of volatile photoproducts with chemical ionization mass-spectrometry as a function of the UV irradiation wavelength. Efficient photodegradation is observed for a broad range of ozone (0.1–300 ppm) and D-limonene (0.02–3 ppm) concentrations used in the preparation of SOA. The observed photoproducts are dominated by oxygenated C1-C3 compounds such as methanol, formic acid, acetaldehyde, acetic acid, and acetone. The irradiation wavelength dependence of the combined yield of the photoproducts closely tracks the absorption spectrum of the SOA material suggesting that photodegradation is not limited to the UV wavelengths. Kinetic simulations suggest that RO<sub>2</sub>+HO<sub>2</sub>/RO<sub>2</sub> reactions represent the dominant route to photochemically active carbonyl and peroxide species in the limonene SOA prepared in these experiments. Similar photodegradation processes are likely to occur in realistic SOA produced by OH- or O<sub>3</sub>-initiated oxidation of biogenic volatile organic compounds in clean air

    On-Board Oxygen Generation Using High Performance Molecular Sieve

    Get PDF
    The majority of high performance combat aircrafts presently being operated by Indian air Force are fitted with conventional oxygen systems in which a replenishable store of oxygen is carried, most often as liquid oxygen and the flow of gas to each crew member is controlled by an individual pressure demand regulator in which the oxygen is diluted with cabin air to provide breathing gas.Moreover, in-flight refueling capability of present generation fighter aircraft has made it possible to fly for long durations (6 to 8 hours). In such case, the oxygen source becomes one of the limiting factors. In order to meet this requirement, a large supply of Gaseous Oxygen (GASOX) or Liquid Oxygen (LOX) have proven to be a costly affair and the Onboard Oxygen Generating System (OBOGS) has become a very convenient and attractive proposal. The OBOGS employs molecular sieves to adsorb nitrogen from engine bleed air using pressure swing adsorption (PSA) technique, wherein two molecular sieve beds are continuously cycled between steps of pressurization (adsorption) and depressurization (desorption) to generate oxygen enriched breathing gas for aircrew. This paper describes the design of OBOGS using high performance Lithium based Low Silica X-type (Li-LSX) molecular sieves and its performance characteristics. It consists of two Zeolite beds filled with Li-LSX material which adsorbs nitrogen fromengine bleed air tapped from Environmental Control System pipe line. The two beds are cycled by a 5/2 way solenoid valve. The input air is supplied to the solenoid valve through a coalescent filter to reduce moisture from it and a pressure regulator is fitted at the upstream of solenoid valve to regulate the system pressure. The experimental setup for evaluation of OBOGS is also discussed. The OBOGS, presented in this paper, meets all the performance requirements as specified in MIL-C-85521 (AS).

    Synergistic effects of bombesin and epidermal growth factor on cancers.

    Full text link
    Bombesin and gastrin-releasing peptide act as autocrine mitogens in various cancers. Bombesin antagonist RC-3095 inhibited growth in some cancers and slowed the progression of premalignant lesions, possibly by down-regulating epidermal growth factor (EGF) receptors. Since the EGF receptor mitogen response involves tyrosine kinase stimulation, we tested the hypotheses that bombesin stimulates, and RC-3095 inhibits, phosphorylation; EGF and bombesin promote the phosphorylation of the same substrates; and EGF and bombesin act synergistically on phosphorylation. Therefore, in vitro assays for phosphorylation were performed in the presence or absence of EGF, bombesin, RC-3095, and combinations in samples derived from tumor, tissue surrounding tumor, cell lines, and normal and transforming tissue derived from the 9,10-dimethyl-1,2-benzanthracene-induced squamous cell lesions of the hamster cheek pouch. Bombesin increased, and RC-3095 decreased, phosphorylation in these samples. In the human hepatoma sample and surrounding tissue, these ligands altered the phosphorylation of the same substrates affected by EGF. EGF and bombesin stimulated phosphorylation synergistically in the hamster samples and the hepatoma. Bombesin-induced phosphorylation was greater in tissue surrounding the hepatoma, whereas RC-3095 was more effective in inhibiting phosphorylation in the hepatoma itself. This cancer, therefore, could be endogenously stimulated by gastrin-releasing peptide. These observations support the hypothesis that bombesin stimulates growth of tissues and tumors by amplifying the phosphorylation response to EGF. The growth inhibitory response to RC-3095, or other bombesin analogues, of individual tumors may be prognosed by in vitro phosphorylation assays using the samples from the patient's tumor

    Implementation of quantum gates and preparation of entangled states in cavity QED with cold trapped ions

    Get PDF
    We propose a scheme to perform basic gates of quantum computing and prepare entangled states in a system with cold trapped ions located in a single mode optical cavity. General quantum computing can be made with both motional state of the trapped ion and cavity state being qubits. We can also generate different kinds of entangled states in such a system without state reduction, and can transfer quantum states from the ion in one trap to the ion in another trap. Experimental requirement for achieving our scheme is discussed.Comment: To appear in J. Opt.

    Evidence for a Soft Nuclear Equation-of-State from Kaon Production in Heavy Ion Collisions

    Full text link
    The production of pions and kaons has been measured in Au+Au collisions at beam energies from 0.6 to 1.5 AGeV with the Kaon Spectrometer at SIS/GSI. The K+ meson multiplicity per nucleon is enhanced in Au+Au collisions by factors up to 6 relative to C+C reactions whereas the corresponding pion ratio is reduced. The ratio of the K+ meson excitation functions for Au+Au and C+C collisions increases with decreasing beam energy. This behavior is expected for a soft nuclear equation-of-state.Comment: 14 pages, 2 figures, accepted for publication in Phys. Rev. Let
    • …
    corecore