121 research outputs found

    The eyestalk transcriptome of red swamp crayfish Procambarus clarkii

    Get PDF
    The red swamp crayfish (. Procambarus clarkii, Girard 1852) is among the most economically important freshwater crustacean species, and it is also considered one of the most aggressive invasive species worldwide. Despite its commercial importance and being one of the most studied crayfish species, its genomic and transcriptomic layout has only been partially studied. Illumina RNA-sequencing was applied to characterize the eyestalk transcriptome and identify its most characterizing genes. A collection of 83,170,732 reads from eyestalks was obtained using Illumina paired-end sequencing technology. A de novo assembly was performed with the Trinity assembly software generating 119,255 contigs (average length of 1007. bp) and identifying the first sequenced transcriptome in this species.The eyestalk is a major site for the production of neurohormones and controls a variety of physiological functions such as osmotic regulation, molting, epidermal color patterns and reproduction. Hence, its transcriptomic characterization is interesting and potentially instrumental to the elucidation of genes which have not been comprehensively described yet. Moreover, the availability of such a large amount of information supported the characterization of molecular families which have never been described before. The P. clarkii eyestalk transcriptome reported here provides a resource for improving the knowledge of the still incompletely defined neuroendocrinology of this species and represents an important source of data for all the interested carcinologists

    RNA sequencing and de novo assembly of the digestive gland transcriptome in Mytilus galloprovincialis fed with toxinogenic and non-toxic strains of Alexandrium minutum

    Get PDF
    Background The Mediterranean mussel Mytilus galloprovincialis is marine bivalve with a relevant commercial importance as well as a key sentinel organism for the biomonitoring of environmental pollution. Here we report the RNA sequencing of the mussel digestive gland, performed with the aim: a) to produce a high quality de novo transcriptome assembly, thus improving the genetic and molecular knowledge of this organism b) to provide an initial assessment of the response to paralytic shellfish poisoning (PSP) on a molecular level, in order to identify possible molecular markers of toxin accumulation. Results The comprehensive de novo assembly and annotation of the transcriptome yielded a collection of 12,079 non-redundant consensus sequences with an average length of 958 bp, with a high percentage of full-length transcripts. The whole-transcriptome gene expression study indicated that the accumulation of paralytic toxins produced by the dinoflagellate Alexandrium minutum over a time span of 5 days scarcely affected gene expression, but the results need further validation with a greater number of biological samples and naturally contaminated specimens. Conclusion The digestive gland reference transcriptome we produced significantly improves the data collected from previous sequencing efforts and provides a basic resource for expanding functional genomics investigations in M. galloprovincialis. Although not conclusive, the results of the RNA-seq gene expression analysis support the classification of mussels as bivalves refractory to paralytic shellfish poisoning and point out that the identification molecular biomarkers of PSP in the digestive gland of this organism is problematic

    New features of desiccation tolerance in the lichen photobiont Trebouxia gelatinosa are revealed by a transcriptomic approach.

    Get PDF
    Trebouxia is the most common lichen-forming genus of aero-terrestrial green algae and all its species are desiccation tolerant (DT). The molecular bases of this remarkable adaptation are, however, still largely unknown. We applied a transcriptomic approach to a common member of the genus, T. gelatinosa, to investigate the alteration of gene expression occurring after dehydration and subsequent rehydration in comparison to cells kept constantly hydrated. We sequenced, de novo assembled and annotated the transcriptome of axenically cultured T. gelatinosa by using Illumina sequencing technology. We tracked the expression profiles of over 13,000 protein-coding transcripts. During the dehydration/rehydration cycle c. 92 % of the total protein-coding transcripts displayed a stable expression, suggesting that the desiccation tolerance of T. gelatinosa mostly relies on constitutive mechanisms. Dehydration and rehydration affected mainly the gene expression for components of the photosynthetic apparatus, the ROS-scavenging system, Heat Shock Proteins, aquaporins, expansins, and desiccation related proteins (DRPs), which are highly diversified in T. gelatinosa, whereas Late Embryogenesis Abundant Proteins were not affected. Only some of these phenomena were previously observed in other DT green algae, bryophytes and resurrection plants, other traits being distinctive of T. gelatinosa, and perhaps related to its symbiotic lifestyle. Finally, the phylogenetic inference extended to DRPs of other chlorophytes, embryophytes and bacteria clearly pointed out that DRPs of chlorophytes are not orthologous to those of embryophytes: some of them were likely acquired through horizontal gene transfer from extremophile bacteria which live in symbiosis within the lichen thallus

    Gene Expression Profiling of Trematomus bernacchii in Response to Thermal and Stabling Stress

    Get PDF
    The Antarctic continent is one of the most pristine environments on planet Earth, yet one of the most fragile and susceptible to the effects of the ongoing climate change. The overwhelming majority of the components of Antarctic marine trophic chain are stenotherm organisms, highly adapted to the extreme, but extremely stable, freezing temperatures of the Antarctic ocean, which have not changed significantly during the past fifteen million years. Notothenioid fishes are the most abundant representatives of ichthyofauna at these latitudes, being ubiquitously found in coastal areas across the entire continent. While different Antarctic fish species have been previously subjected to studies aimed at defining their range of thermal tolerance, or at studying the response to acute thermal stress, just a handful of authors have investigated the effects of the exposure to a moderate increase of temperature, falling within the expected forecasts for the next few decades in some areas of the Antarctica. Here, the emerald rockcod Trematomus bernacchii was used as a model species to investigate the effects of a 20-day long exposure to a +1.5 °C increase in the brain, gills and skeletal muscle, using a RNA-sequencing approach. In parallel, the experimental design also allowed for assessing the impact of stabling (including acclimation, the handling of fishes and their confinement in tanks during the experimental phase) on gene expression profiling. The results of this study clearly identified the brain as the most susceptible tissue to heat stress, with evidence of a time-dependent response dominated by an alteration of immune response, protein synthesis and folding, and energy metabolism-related genes. While the gills displayed smaller but still significant alterations, the skeletal muscle was completely unaffected by the experimental conditions. The stabling conditions also had an important impact on gene expression profiles in the brain, suggesting the presence of significant alterations of the fish nervous system, possibly due to the confinement to tanks with limited water volume and of the restricted possibility of movement. Besides providing novel insights in the molecular mechanisms underlying thermal stress in notothenioids, these findings suggest that more attention should be dedicated to an improved design of the experiments carried out on Antarctic organism, due to their extreme susceptibility to the slightest environmental alterations

    Identification and Characterization of a Novel Family of Cysteine-Rich Peptides (MgCRP-I) from Mytilus galloprovincialis

    Get PDF
    We report the identification of a novel gene family (named MgCRP-I) encoding short secreted cysteine-rich peptides in the Mediterranean mussel Mytilus galloprovincialis. These peptides display a highly conserved pre-pro region and a hypervariable mature peptide comprising six invariant cysteine residues arranged in three intramolecular disulfide bridges. Although their cysteine pattern is similar to cysteines-rich neurotoxic peptides of distantly related protostomes such as cone snails and arachnids, the different organization of the disulfide bridges observed in synthetic peptides and phylogenetic analyses revealed MgCRP-I as a novel protein family. Genome- and transcriptome-wide searches for orthologous sequences in other bivalve species indicated the unique presence of this gene family in Mytilus spp. Like many antimicrobial peptides and neurotoxins, MgCRP-I peptides are produced as pre-propeptides, usually have a net positive charge and likely derive from similar evolutionary mechanisms, that is, gene duplication and positive selection within the mature peptide region; however, synthetic MgCRP-I peptides did not display significant toxicity in cultured mammalian cells, insecticidal, antimicrobial, or antifungal activities. The functional role of MgCRP-I peptides in mussel physiology still remains puzzling

    A cluster randomised control trial to evaluate the effectiveness and cost-effectiveness of the Italian medicines use review (I-MUR) for asthma patients

    Get PDF
    Background The economic burden of asthma, which relates to the degree of control, is €5 billion annually in Italy. Pharmacists could help improve asthma control, reducing this burden. This study aimed to evaluate the effectiveness and cost-effectiveness of Medicines Use Reviews provided by community pharmacists in asthma. Methods This cluster randomised, multi-centre, controlled trial in adult patients with asthma was conducted in 15 of the 20 regions of Italy between September 2014 and July 2015. After stratification by region, community pharmacists were randomly allocated to group A (trained in and delivered the intervention at baseline) or B (training and delivery 3 months later), using computerised random number generation in blocks of 10. Each recruited up to five patients, with both groups followed for 9 months. The intervention consisted of a systematic, structured face-to-face consultation with a pharmacist, covering asthma symptoms, medicines used, attitude towards medicines and adherence, recording pharmacist-identified pharmaceutical care issues (PCIs). The primary outcome was asthma control, assessed using the Asthma-Control-Test (ACT) score (ACT ≥ 20 represents good control). Secondary outcomes were: number of active ingredients, adherence, cost-effectiveness compared with usual care. Although blinding was not possible for either pharmacists or patients, assessment of outcomes was conducted by researchers blind to group allocation. Results Numbers of pharmacists and patients enrolled were 283 (A = 136; B = 147) and 1263 (A = 600; B = 663), numbers completing were 201 (A = 97; B = 104) and 816 (A = 400; B = 416), respectively. Patients were similar in age and gender and 56.13% (458/816) had poor/partial asthma control. Pharmacists identified 1256 PCIs (mean 1.54/patient), mostly need for education, monitoring and potentially ineffective therapy. Median ACT score at baseline differed between groups (A = 19, B = 18; p < 0.01). Odds ratio for improved asthma control was 1.76 (95% CI 1.33–2.33) and number needed to treat 10 (95% CI 6–28). Number of active ingredients reduced by 7.9% post-intervention (p < 0.01). Adherence improved by 35.4% 3 months post-intervention and 40.0% at 6 months (p < 0.01). The probability of the intervention being more cost-effective than usual care was 100% at 9 months. Conclusions This community pharmacist-based intervention demonstrated both effectiveness and cost-effectiveness. It has since been implemented as the first community pharmacy cognitive service in Italy

    Neural Network Based Approach to Recognition of Meteor Tracks in the Mini-EUSO Telescope Data

    Full text link
    Mini-EUSO is a wide-angle fluorescence telescope that registers ultraviolet (UV) radiation in the nocturnal atmosphere of Earth from the International Space Station. Meteors are among multiple phenomena that manifest themselves not only in the visible range but also in the UV. We present two simple artificial neural networks that allow for recognizing meteor signals in the Mini-EUSO data with high accuracy in terms of a binary classification problem. We expect that similar architectures can be effectively used for signal recognition in other fluorescence telescopes, regardless of the nature of the signal. Due to their simplicity, the networks can be implemented in onboard electronics of future orbital or balloon experiments.Comment: 15 page
    • …
    corecore