22 research outputs found
European 1 MW, 170 GHz CW Gyrotron Prototype for ITER - long-pulse operation at KIT -
The upgraded EU 1 MW, 170 GHz continuous wave (CW) industrial prototype gyrotron (TH1509U) for Electron Cyclotron Resonance Heating and Current Drive (ECRH&CD) in ITER was tested at the Karlsruhe Institute of Technology (KIT). The gyrotron surpassed the performance of the previous TH1509 tube. In particular, TH1509U delivered (i) 0.9 MW in 180 s pulses (max. pulse length of the KIT test stand) and (ii) more than 1 MW at a pulse length limited to 40 s, due to a problem with the test stand cooling circuit at that time. In addition, it was possible to demonstrate gyrotron operation at (iii) 0.5 MW in 1600 s pulses
Validation of theory-based models for the control of plasma currents in W7-X divertor plasmas
A theory-based model for the control of plasma currents for steady-state operation in W7-X is proposed and intended for model-based plasma control. The conceptual outline implies the strength of physics-based models: it offer approaches applicable to future conditions of fusion devices or next-step machines. The application at extrapolated settings is related to the validity range of the theory model. Therefore, the predictive power of theory-based control models could be larger than for data-driven approaches and limitations can be predicted from the validity range for the prediction of bootstrap currents in W7-X. The model predicts the L/R response when density or heating power is changed. The model is based on neoclassical bootstrap current calculations and validated for different discharge conditions. While the model was found to be broadly applicable for conducted electron-cyclotron-heated discharges in W7-X, limits were found for cases when the polarization of the electron cyclotron heating was changed from X2 to O2-heating. The validity assessment attempts to quantify the potential of the derived model for model-based control in the operational space (density, heating power) of W7-X
ECCD-induced sawtooth crashes at W7-X
The optimised superconducting stellarator W7-X generates its rotational transform by means of
external coils, therefore no toroidal current is necessary for plasma confinement. Electron
cyclotron current drive experiments were conducted for strikeline control and safe divertor
operation. During current drive experiments periodic and repetitive crashes of the central
electron temperature, similar to sawtooth crashes in tokamaks, were detected. Measurements
from soft x-ray tomography and electron cyclotron emission show that the crashes are preceded
by weak oscillating precursors and a displacement of the plasma core, consistent with a
(m, n)=(1, 1) mode. The displacement occurs within 100μs, followed by expulsion and
redistribution of the core into the external part of the plasma. Two types of crashes, with
different frequencies and amplitudes are detected in the experimental program. For these
non-stationary parameters a strong dependence on the toroidal current is found. A 1-D heuristic
model for current diffusion is proposed as a first step to explain the characteristic crash time.
Initial results show that the modelled current diffusion timescale is consistent with the initial
crash frequency and that the toroidal current rise shifts the position where the instability is
triggered, resulting in larger crash amplitudes