56 research outputs found

    A Comprehensive Review of 4(1<em>H</em>)-Quinolones and 4(1<em>H</em>)-Pyridones for the Development of an Effective Antimalarial

    Get PDF
    Malaria is a global public health issue. Despite the efforts in malaria prevention, nearly half the world’s population is at risk of infection. Until present-day, researchers are struggling to design and discover an efficacious antimalarial. In comparison to most common antimalarial chemotypes that eliminate erythrocytic stages of P. falciparum, 4(1H)-quinolones and 4(1H)-pyridones exhibit antimalarial activity against multiple stages of the parasite. They have potential to treat blood stages of multidrug resistant P. falciparum malaria, eradicate dormant exoerythro stages of relapsing malaria species (P. vivax), and prevent transmission of infectious gametocytes to mosquitoes. However, thus far, the advancement of these chemotypes towards pre-clinical and clinical development has been impeded due to poor physicochemical properties, poor oral bioavailability, and poor dose-proportionality limiting preclinical safety and toxicity studies. Despite all these challenges, 4(1H)-quinolones and 4(1H)-pyridones continue to be at the forefront for the development of the next-generation antimalarials as they would have tremendous global public health impact and could significantly enhance current malaria elimination efforts

    SAR refinement of antileishmanial N2,N4-disubstituted quinazoline-2,4-diamines

    Get PDF
    Visceral leishmaniasis is a neglected parasitic disease that has a high fatality rate in the absence of treatment. New drugs that are inexpensive, orally active, and effective could be useful tools in the fight against this disease. We previously showed that N2,N4-disubstituted quinazoline-2,4-diamines displayed low- to sub-micromolar potency against intracellular Leishmania, and lead compound N4-(furan-2-ylmethyl)-N2-isopropyl-7-methylquinazoline-2,4-diamine (4) exhibited modest efficacy in an acute murine model of visceral leishmaniasis. In the present work, thirty-one N2,N4-disubstituted quinazoline-2,4-diamines that had not previously been examined for their antileishmanial activity were evaluated for their potency and selectivity against Leishmania donovani, the causative parasite of visceral leishmaniasis. Quinazoline-2,4-diamines with aromatic substituents at both N2 and N4 exhibited potent in vitro antileishmanial activity but relatively low selectivity, while compounds substituted with small alkyl groups at either N2 or N4 generally showed lower antileishmanial potency but were less toxic to a murine macrophage cell line. Based on their in vitro antileishmanial potency, N4-benzyl-N2-(4-chlorobenzyl)quinazoline-2,4-diamine (15) and N2-benzyl-N4-isopropylquinazoline-2,4-diamine (40) were selected for in vivo evaluation of their pharmacokinetic and antileishmanial properties. While 15 displayed a longer plasma half-life and a greater area under the curve than 40, both compounds showed low efficacy in an acute murine visceral leishmaniasis model. Although the present study did not identify new quinazoline-2,4-diamines with promising in vivo efficacy, the reduced in vitro toxicity of derivatives bearing small alkyl groups at either N2 or N4 may provide clues for the design of safe and effective antileishmanial quinazolines

    Spirocyclic chromanes exhibit antiplasmodial activities and inhibit all intraerythrocytic life cycle stages

    Get PDF
    AbstractWe screened a collection of synthetic compounds consisting of natural-product-like substructural motifs to identify a spirocyclic chromane as a novel antiplasmodial pharmacophore using an unbiased cell-based assay. The most active spirocyclic compound UCF 201 exhibits a 50% effective concentration (EC50) of 350 nM against the chloroquine-resistant Dd2 strain and a selectivity over 50 using human liver HepG2 cells. Our analyses of physicochemical properties of UCF 201 showed that it is in compliance with Lipinski's parameters and has an acceptable physicochemical profile. We have performed a limited structure-activity-relationship study with commercially available chromanes preserving the spirocyclic motif. Our evaluation of stage specificities of UCF 201 indicated that the compound is early-acting in blocking parasite development at ring, trophozoite and schizont stages of development as well as merozoite invasion. SPC is an attractive lead candidate scaffold because of its ability to act on all stages of parasite's aexual life cycle unlike current antimalarials

    Evaluating protein cross-linking as a therapeutic strategy to stabilize SOD1 variants in a mouse model of familial ALS

    Get PDF
    Mutations in the gene encoding Cu-Zn superoxide dismutase 1 (SOD1) cause a subset of familial amyotrophic lateral sclerosis (fALS) cases. A shared effect of these mutations is that SOD1, which is normally a stable dimer, dissociates into toxic monomers that seed toxic aggregates. Considerable research effort has been devoted to developing compounds that stabilize the dimer of fALS SOD1 variants, but unfortunately, this has not yet resulted in a treatment. We hypothesized that cyclic thiosulfinate cross-linkers, which selectively target a rare, 2 cysteine-containing motif, can stabilize fALS-causing SOD1 variants in vivo. We created a library of chemically diverse cyclic thiosulfinates and determined structure-cross-linking-activity relationships. A pre-lead compound, “S-XL6,” was selected based upon its cross-linking rate and drug-like properties. Co-crystallographic structure clearly establishes the binding of S-XL6 at Cys 111 bridging the monomers and stabilizing the SOD1 dimer. Biophysical studies reveal that the degree of stabilization afforded by S-XL6 (up to 24°C) is unprecedented for fALS, and to our knowledge, for any protein target of any kinetic stabilizer. Gene silencing and protein degrading therapeutic approaches require careful dose titration to balance the benefit of diminished fALS SOD1 expression with the toxic loss-of-enzymatic function. We show that S-XL6 does not share this liability because it rescues the activity of fALS SOD1 variants. No pharmacological agent has been proven to bind to SOD1 in vivo. Here, using a fALS mouse model, we demonstrate oral bioavailability; rapid engagement of SOD1G93A by S-XL6 that increases SOD1G93A’s in vivo half-life; and that S-XL6 crosses the blood–brain barrier. S-XL6 demonstrated a degree of selectivity by avoiding off-target binding to plasma proteins. Taken together, our results indicate that cyclic thiosulfinate-mediated SOD1 stabilization should receive further attention as a potential therapeutic approach for fALS

    Progress in the Optimization of 4(1H)-Quinolone Derivatives as Antimalarials Targeting the Erythrocytic, the Exoerythrocytic and the Transmitting Stages of the Malaria Parasite

    Get PDF
    Malaria is one of the leading infectious diseases occurring mainly in tropical and subtropical areas. Although available antimalarial tools have reduced the number of fatalities, there is still an urgent need for the development of new and more efficacious treatments to cure and eradicate malaria especially due to emerging resistance to all antimalarial drugs. Research was initiated to revisit antimalarial compounds which were deemed unsuitable as a result of poor understanding of physicochemical properties and the optimization thereof. The 4(1H)-quinolones are a class of compounds with demonstrated activity against malaria parasites. Recent optimization of the long-known core led to two highly promising compounds, i.e. P4Q-391 and ELQ-300, with great selective activity against all stages of the parasite's life cycle and good physicochemical properties. In this paper, we discuss the key steps on the way to these compounds, which fuel hope to find a suitable treatment for the prevention, cure and eradication of malaria

    Ammonia-free synthesis of 3-trifluoromethyl-3-phenyldiaziridine

    No full text
    <p>An ammonia-free synthesis of 3-trifluoromethyl-3-phenyldiaziridine, an important intermediate in the synthesis of a widely used photolabel 3-trifluoromethyl-3-phenyldiazirine, is described. By avoiding the use of volatile, corrosive, and toxic anhydrous ammonia, the major hazard involved in the synthesis of this widely used photolabel is eliminated. Furthermore, this synthesis is convenient compared to the conventional route, since it is significantly less time consuming and, due to the absence of liquid ammonia, this method does not require the maintenance of low temperature for prolonged periods.</p

    Metal-Free Arylation of Ethyl Acetoacetate with Hypervalent Diaryliodonium Salts: An Immediate Access to Diverse 3-Aryl-4(1\u3cem\u3eH\u3c/em\u3e)-Quinolones

    No full text
    A clean arylation protocol of ethyl acetoacetate was developed using hypervalent diaryliodonium salts under mild and metal-free conditions. The scope of the reaction, using symmetric and unsymmetric iodonium salts with varying sterics and electronics, was examined. Further, this method has been applied for the synthesis of antimalarial compound ELQ-300, which is currently in preclinical development

    Photoactivatable probes and uses thereof

    Get PDF
    Provided herein are pyridyl- and pyrimidyl-containing diazirines that can be photoactivateable probes and formulations thereof. Also provided herein are photoaffinity labels that can include the pyridyl- and pyrimidyl-containing diazirines provided herein. Also provided herein are methods of using the photoactivatable probes and photoaffinity labels provided herein in a photoaffinity labeling reaction and/or assay
    • …
    corecore