4 research outputs found

    Effect of dynamic random leaks on the monitoring accuracy of home mechanical ventilators : a bench study

    Get PDF
    So far, the accuracy of tidal volume (VT) and leak measures provided by the built-in software of commercial home ventilators has only been tested using bench linear models with fixed calibrated and continuous leaks. The objective was to assess the reliability of the estimation of tidal volume (VT) and unintentional leaks in a single tubing bench model which introduces random dynamic leaks during inspiratory or expiratory phases. The built-in software of four commercial home ventilators and a fifth ventilator-independent ad hoc designed external software tool were tested with two levels of leaks and two different models with excess leaks (inspiration or expiration). The external software analyzed separately the inspiratory and expiratory unintentional leaks. In basal condition, all ventilators but one underestimated tidal volume with values ranging between -1.5 ± 3.3% to -8.7% ± 3.27%. In the model with excess of inspiratory leaks, VT was overestimated by all four commercial software tools, with values ranging from 18.27 ± 7.05% to 35.92 ± 17.7%, whereas the ventilator independent-software gave a smaller difference (3.03 ± 2.6%). Leaks were underestimated by two applications with values of -11.47 ± 6.32 and -5.9 ± 0.52 L/min. With expiratory leaks, VT was overestimated by the software of one ventilator and the ventilator-independent software and significantly underestimated by the other three, with deviations ranging from +10.94 ± 7.1 to -48 ± 23.08%. The four commercial tools tested overestimated unintentional leaks, with values between 2.19 ± 0.85 to 3.08 ± 0.43 L/min. In a bench model, the presence of unintentional random leaks may be a source of error in the measurement of VT and leaks provided by the software of home ventilators. Analyzing leaks during inspiration and expiration separately may reduce this source of error

    Effect of dynamic random leaks on the monitoring accuracy of home mechanical ventilators : a bench study

    No full text
    So far, the accuracy of tidal volume (VT) and leak measures provided by the built-in software of commercial home ventilators has only been tested using bench linear models with fixed calibrated and continuous leaks. The objective was to assess the reliability of the estimation of tidal volume (VT) and unintentional leaks in a single tubing bench model which introduces random dynamic leaks during inspiratory or expiratory phases. The built-in software of four commercial home ventilators and a fifth ventilator-independent ad hoc designed external software tool were tested with two levels of leaks and two different models with excess leaks (inspiration or expiration). The external software analyzed separately the inspiratory and expiratory unintentional leaks. In basal condition, all ventilators but one underestimated tidal volume with values ranging between -1.5 ± 3.3% to -8.7% ± 3.27%. In the model with excess of inspiratory leaks, VT was overestimated by all four commercial software tools, with values ranging from 18.27 ± 7.05% to 35.92 ± 17.7%, whereas the ventilator independent-software gave a smaller difference (3.03 ± 2.6%). Leaks were underestimated by two applications with values of -11.47 ± 6.32 and -5.9 ± 0.52 L/min. With expiratory leaks, VT was overestimated by the software of one ventilator and the ventilator-independent software and significantly underestimated by the other three, with deviations ranging from +10.94 ± 7.1 to -48 ± 23.08%. The four commercial tools tested overestimated unintentional leaks, with values between 2.19 ± 0.85 to 3.08 ± 0.43 L/min. In a bench model, the presence of unintentional random leaks may be a source of error in the measurement of VT and leaks provided by the software of home ventilators. Analyzing leaks during inspiration and expiration separately may reduce this source of error

    Computer-assisted diagnosis for an early identification of lung cancer in chest X rays

    No full text
    Abstract Computer-assisted diagnosis (CAD) algorithms have shown its usefulness for the identification of pulmonary nodules in chest x-rays, but its capability to diagnose lung cancer (LC) is unknown. A CAD algorithm for the identification of pulmonary nodules was created and used on a retrospective cohort of patients with x-rays performed in 2008 and not examined by a radiologist when obtained. X-rays were sorted according to the probability of pulmonary nodule, read by a radiologist and the evolution for the following three years was assessed. The CAD algorithm sorted 20,303 x-rays and defined four subgroups with 250 images each (percentiles ≥ 98, 66, 33 and 0). Fifty-eight pulmonary nodules were identified in the ≥ 98 percentile (23,2%), while only 64 were found in lower percentiles (8,5%) (p < 0.001). A pulmonary nodule was confirmed by the radiologist in 39 out of 173 patients in the high-probability group who had follow-up information (22.5%), and in 5 of them a LC was diagnosed with a delay of 11 months (12.8%). In one quarter of the chest x-rays considered as high-probability for pulmonary nodule by a CAD algorithm, the finding is confirmed and corresponds to an undiagnosed LC in one tenth of the cases
    corecore