28 research outputs found

    Modular microfluidic system fabricated in thermoplastics for the strain-specific detection of bacterial pathogens

    Get PDF
    The recent outbreaks of a lethal E. coli strain in Germany have aroused renewed interest in developing rapid, specific and accurate systems for detecting and characterizing bacterial pathogens in suspected contaminated food and/or water supplies. To address this need, we have designed, fabricated and tested an integrated modular-based microfluidic system and the accompanying assay for the strain-specific identification of bacterial pathogens. The system can carry out the entire molecular processing pipeline in a single disposable fluidic cartridge and detect single nucleotide variations in selected genes to allow for the identification of the bacterial species, even its strain with high specificity. The unique aspect of this fluidic cartridge is its modular format with task-specific modules interconnected to a fluidic motherboard to permit the selection of the target material. In addition, to minimize the amount of finishing steps for assembling the fluidic cartridge, many of the functional components were produced during the polymer molding step used to create the fluidic network. The operation of the cartridge was provided by electronic, mechanical, optical and hydraulic controls located off-chip and packaged into a small footprint instrument (1 ft3). The fluidic cartridge was capable of performing cell enrichment, cell lysis, solid-phase extraction (SPE) of genomic DNA, continuous flow (CF) PCR, CF ligase detection reaction (LDR) and universal DNA array readout. The cartridge was comprised of modules situated on a fluidic motherboard; the motherboard was made from polycarbonate, PC, and used for cell lysis, SPE, CF PCR and CF LDR. The modules were task-specific units and performed universal zip-code array readout or affinity enrichment of the target cells with both made from poly(methylmethacrylate), PMMA. Two genes, uidA and sipB/C, were used to discriminate between E. coli and Salmonella, and evaluated as a model system. Results showed that the fluidic system could successfully identify bacteria in <40 min with minimal operator intervention and perform strain identification, even from a mixed population with the target of a minority. We further demonstrated the ability to analyze the E. coli O157:H7 strain from a waste-water sample using enrichment followed by genotyping

    Reversible linkage of two distinct small molecule inhibitors of myc generates a dimeric inhibitor with improved potency that is active in myc over-expressing cancer cell lines

    Get PDF
    We describe the successful application of a novel approach for generating dimeric Myc inhibitors by modifying and reversibly linking two previously described small molecules.We synthesized two directed libraries of monomers, each comprised of a ligand, a connector, and a bioorthogonal linker element, to identify the optimal dimer configuration required to inhibit Myc. We identified combinations of monomers, termed self-assembling dimeric inhibitors, which displayed synergistic inhibition of Myc-dependent cell growth. We confirmed that these dimeric inhibitors directly bind to Myc blocking its interaction with Max and affect transcription of MYC dependent genes. Control combinations that are unable to form a dimer do not show any synergistic effects in these assays. Collectively, these data validate our new approach to generate more potent and selective inhibitors of Myc by self-assembly from smaller, lower affinity components. This approach provides an opportunity for developing novel therapeutics against Myc and other challenging protein:protein interaction (PPI) target classes. © 2015 Wanner et al

    Novel Cephalosporins Selectively Active on Nonreplicating Mycobacterium tuberculosis

    Get PDF
    We report two series of novel cephalosporins that are bactericidal to Mycobacterium tuberculosis alone of the pathogens tested, which only kill M. tuberculosis when its replication is halted by conditions resembling those believed to pertain in the host, and whose bactericidal activity is not dependent upon or enhanced by clavulanate, a β-lactamase inhibitor. The two classes of cephalosporins bear an ester or alternatively an oxadiazole isostere at C-2 of the cephalosporin ring system, a position that is almost exclusively a carboxylic acid in clinically used agents in the class. Representatives of the series kill M. tuberculosis within macrophages without toxicity to the macrophages or other mammalian cells

    Design and synthesis of capped DNA duplexes

    No full text
    The work describes the design and synthesis of aromatic linker molecules to cap short DNA duplexes in order to improve their thermal stability. The core aromatic moieties were based on naphthalene diimide and terthiophene. The cap molecules were incorporated into short four base pair oligonucleotide duplexes using modified automated oligonucleotide synthesis procedures. Control sequences, containing either four-nucleotide loops (either A or T) or a pentaethylene glycol linker replacing the caps, were also synthesized. Sequences were designed such that the cap molecules were adjacent to either a 5′-CG-3 ′ or a 5′-AT-3′ base pair. Thermal melting experiments were performed on the oligonucleotide samples at multiple concentrations. Oligonucleotide duplexes with naphthalene diimide based caps showed substantially higher Tm values when the cap was adjacent to a CG base pair. The terthiophene containing oligonucleotides showed higher Tm values when the cap was adjacent to an AT base pair. Naphthalene diimide caps were, in general, more effective in increasing the stability of the oligonucleotide duplexes as compared to the terthiophene caps. The length of the aliphatic chains emanating from the naphthalene diimide core showed a preference for an odd number of carbon atoms in the chain. Circular dichroism spectra of the oligonucleotides indicate that the capped oligonucleotides adopt a B-DNA like conformation

    Synthesis of Endcap Dimethoxytrityl Phosphoramidites for Endcapped Oligonucleotides

    Full text link
    Endcaps may be either aromatic or aliphatic molecules that specifically crossâ link the 5â ² end of one strand with the 3â ² end of the complementary strand in a DNA duplex. Endcaps may be viewed as a replacement of the loop region nucleotides of a DNA hairpin, with the added advantage of increased thermal stability. An endcap is incorporated into the sequence during oligonucleotide synthesis. Three endcaps are described in this unit. The naphthalene diimide endcap prefers to base stack with GC base pairs. The terthiophene endcap has higher lipophilicity than the naphthalene diimide endcap and provides higher stability when stacked over an AT base pair. The 2,2â ²â oxydiacetamide endcap provides lower enhancement in stability but a more rigid and wellâ defined structure than the oligo(ethylene glycol) endcaps. Synthesis of endcapped oligonucleotides can be carried out using standard automated synthesis protocols with only minor modifications.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/152551/1/cpnc0506.pd

    Ligase Detection Reaction Generation of Reverse Molecular Beacons for Near Real-Time Analysis of Bacterial Pathogens Using Single-Pair Fluorescence Resonance Energy Transfer and a Cyclic Olefin Copolymer Microfluidic Chip

    No full text
    Detection of pathogenic bacteria and viruses require strategies that can signal the presence of these targets in near real-time due to the potential threats created by rapid dissemination into water and/or food supplies In this paper, we report an innovative strategy that can rapidly detect bacterial pathogens using reporter sequences found in their genome without requiring polymerase chain reaction (PCR) A pair of strain-specific primers was designed based on the 168 rRNA gene and were end-labeled with a donor (Cy5) or acceptor (Cy5 5) dye In the presence of the target bacterium, the primers were joined using a ligase detection reaction (LDR) only when the primers were completely complementary to the target sequence to form a reverse molecular beacon (rMB), thus bringing Cy5 (donor) and Cy5 5 (acceptor) into close proximity to allow fluorescence resonance energy transfer (FRET) to occur These rMBs were subsequently analyzed using single molecule detection of the FRET pairs (single-pair FRET, spFRET) The LDR was performed using a continuous flow thermal cycling process configured in a cyclic olefin copolymer (COC) microfluidic device using either 2 or 20 thermal cycles Single molecule photon bursts from the resulting rMBs were detected on chip and registered using a simple laser-induced fluorescence (LIF) instrument. The spFRET signatures from the target pathogens were reported in as little as 2 6 mm using spFRET.close161

    High sensitivity EndoV mutation scanning through real-time ligase proofreading

    No full text
    The ability to associate mutations in cancer genes with the disease and its subtypes is critical for understanding oncogenesis and identifying biomarkers for clinical diagnosis. A two-step mutation scanning method that sequentially used endonuclease V (EndoV) to nick at mismatches and DNA ligase to reseal incorrectly or nonspecifically nicked sites was previously developed in our laboratory. Herein we report an optimized single-step assay that enables ligase to proofread EndoV cleavage in real-time under a compromise between buffer conditions. Real-time proofreading results in a dramatic reduction of background cleavage. A universal PCR strategy that employs both unlabeled gene-specific primers and labeled universal primers, allows for multiplexed gene amplification and precludes amplification of primer dimers. Internally labeled PCR primers eliminate EndoV cleavage at the 5′ terminus, enabling high-throughput capillary electrophoresis readout. Furthermore, signal intensity is increased and artifacts are reduced by generating heteroduplexes containing only one of the two possible mismatches (e.g. either A/C or G/T). The single-step assay improves sensitivity to 1:50 and 1:100 (mutant:wild type) for unknown mutations in the p53 and K-ras genes, respectively, opening prospects as an early detection tool

    Modular microfluidic system fabricated in thermoplastics for the strain-specific detection of bacterial pathogens

    No full text
    The recent outbreaks of a lethal E. coli strain in Germany have aroused renewed interest in developing rapid, specific and accurate systems for detecting and characterizing bacterial pathogens in suspected contaminated food and/or water supplies. To address this need, we have designed, fabricated and tested an integrated modular-based microfluidic system and the accompanying assay for the strain-specific identification of bacterial pathogens. The system can carry out the entire molecular processing pipeline in a single disposable fluidic cartridge and detect single nucleotide variations in selected genes to allow for the identification of the bacterial species, even its strain with high specificity. The unique aspect of this fluidic cartridge is its modular format with task-specific modules interconnected to a fluidic motherboard to permit the selection of the target material. In addition, to minimize the amount of finishing steps for assembling the fluidic cartridge, many of the functional components were produced during the polymer molding step used to create the fluidic network. The operation of the cartridge was provided by electronic, mechanical, optical and hydraulic controls located off-chip and packaged into a small footprint instrument (1 ft(3)). The fluidic cartridge was capable of performing cell enrichment, cell lysis, solid-phase extraction (SPE) of genomic DNA, continuous flow (CF) PCR, CF ligase detection reaction (LDR) and universal DNA array readout. The cartridge was comprised of modules situated on a fluidic motherboard; the motherboard was made from polycarbonate, PC, and used for cell lysis, SPE, CF PCR and CF LDR. The modules were task-specific units and performed universal zip-code array readout or affinity enrichment of the target cells with both made from poly(methylmethacrylate), PMMA. Two genes, uidA and sipB/C, were used to discriminate between E. coli and Salmonella, and evaluated as a model system. Results showed that the fluidic system could successfully identify bacteria in <40 min with minimal operator intervention and perform strain identification, even from a mixed population with the target of a minority. We further demonstrated the ability to analyze the E. coli O157:H7 strain from a waste-water sample using enrichment followed by genotyping.close9

    Multiplexed Identification of Blood-Borne Bacterial Pathogens by Use of a Novel 16S rRNA Gene PCR-Ligase Detection Reaction-Capillary Electrophoresis Assay▿ †

    No full text
    We have developed a novel high-throughput PCR-ligase detection reaction-capillary electrophoresis (PCR-LDR-CE) assay for the multiplexed identification of 20 blood-borne pathogens (Staphylococcus epidermidis, Staphylococcus aureus, Bacillus cereus, Enterococcus faecalis, Enterococcus faecium, Listeria monocytogenes, Streptococcus pneumoniae, Streptococcus pyogenes, Streptococcus agalactiae, Escherichia coli, Klebsiella pneumoniae, Haemophilus influenzae, Pseudomonas aeruginosa, Acinetobacter baumannii, Neisseria meningitidis, Bacteroides fragilis, Bacillus anthracis, Yersinia pestis, Francisella tularensis, and Brucella abortus), the last four of which are biothreat agents. The method relies on the amplification of two regions within the bacterial 16S rRNA gene, using universal PCR primers and querying the identity of specific single-nucleotide polymorphisms within the amplified regions in a subsequent LDR. The ligation products vary in color and size and are separated by CE. Each organism generates a specific pattern of ligation products, which can be used to distinguish the pathogens using an automated software program we developed for that purpose. The assay has been verified on 315 clinical isolates and demonstrated a detection sensitivity of 98%. Additionally, 484 seeded blood cultures were tested, with a detection sensitivity of 97.7%. The ability to identify geographically variant strains of the organisms was determined by testing 132 isolates obtained from across the United States. In summary, the PCR-LDR-CE assay can successfully identify, in a multiplexed fashion, a panel of 20 blood-borne pathogens with high sensitivity and specificity

    Target-Directed Self-Assembly of Homodimeric Drugs Against β‑Tryptase

    No full text
    Tryptase, a serine protease released from mast cells, is implicated in many allergic and inflammatory disorders. Human tryptase is a donut-shaped tetramer with the active sites facing inward forming a central pore. Bivalent ligands spanning two active sites potently inhibit this configuration, but these large compounds have poor drug-like properties. To overcome some of these challenges, we developed self-assembling molecules, called coferons, which deliver a larger compound in two parts. Using a pharmacophoric core and reversibly binding linkers to span two active sites, we have successfully produced three novel homodimeric tryptase inhibitors. Upon binding to tryptase, compounds reassembled into flexible homodimers, with significant improvements in IC<sub>50</sub> (0.19 ± 0.08 μM) over controls (5.50 ± 0.09 μM), and demonstrate good activity in mast cell lines. These studies provide validation for this innovative technology that is especially well-suited for the delivery of dimeric drugs to modulate intracellular macromolecular targets
    corecore