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RESEARCH ARTICLE

Reversible Linkage of Two Distinct Small
Molecule Inhibitors of Myc Generates a
Dimeric Inhibitor with Improved Potency
That Is Active in Myc Over-Expressing Cancer
Cell Lines
Jutta Wanner1, Darlene Romashko1, Douglas S. Werner1, Earl W. May1, Yue Peng1,
Ryan Schulz1, KennethW. Foreman1, Suzanne Russo1, Lee D. Arnold1¤, Maneesh Pingle1,
Donald E. Bergstrom2, Francis Barany3, Stuart Thomson1*

1 Coferon Inc, 25 Health Sciences Drive, Stony Brook, New York, United States of America, 2 Purdue
University, West Lafayette, Indiana, United States of America, 3 Department of Microbiology, Weill Cornell
Medical College, New York, New York, United States of America

¤ Current address: Assembly Biosciences Inc., New York, New York, United States of America
* sthomson@coferon.com

Abstract
We describe the successful application of a novel approach for generating dimeric Myc in-

hibitors by modifying and reversibly linking two previously described small molecules. We

synthesized two directed libraries of monomers, each comprised of a ligand, a connector,

and a bioorthogonal linker element, to identify the optimal dimer configuration required to in-

hibit Myc. We identified combinations of monomers, termed self-assembling dimeric inhibi-

tors, which displayed synergistic inhibition of Myc-dependent cell growth. We confirmed

that these dimeric inhibitors directly bind to Myc blocking its interaction with Max and affect

transcription of MYC dependent genes. Control combinations that are unable to form a

dimer do not show any synergistic effects in these assays. Collectively, these data validate

our new approach to generate more potent and selective inhibitors of Myc by self-assembly

from smaller, lower affinity components. This approach provides an opportunity for develop-

ing novel therapeutics against Myc and other challenging protein:protein interaction (PPI)

target classes.

Introduction
The use of small molecules as drugs to inhibit cancer targets has made tremendous strides over
the last 20 years, with numerous drugs in routine clinical use in a wide range of different can-
cers. This approach has been particularly successful for enzymatic targets, where the binding
site is a well-defined, distinct pocket in the protein that lends itself to the rational design of
highly potent inhibitors. However, efforts to expand the use of small molecules to target larger
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or disordered surface areas that are critical for regulating protein-protein interactions (PPIs)
have been met with more limited success. Prototypical PPI inhibitors tend to be large in size
and have poor drug like properties and so have limited utility in the clinic. It is clear then that
innovative approaches are needed to fully enable the discovery of medicines for the large num-
ber of what are generally considered therapeutically relevant but undruggable target classes in
many disease areas.

As one approach to address more challenging drug targets we are developing a novel tech-
nology to allow self-assembly of small molecules into large dimeric inhibitors, first described
by Barany and colleagues [1]. The technology platform enables the delivery of dimeric mole-
cules with a large binding footprint to inhibit biological targets that have frequently challenged
traditional medicinal chemistry approaches (Fig. 1A). The dimers are composed of two mono-
mers, each comprising a ligand, a connector, and a bioorthogonal linker element. Under physi-
ological conditions, the monomers may rapidly equilibrate to form dimers through formation
of reversible covalent bonds between the linker elements. The linkers are designed to be low
molecular weight moieties that can be readily appended to specifically targeted ligands via ap-
propriate connectors. The ligands, linkers and connectors can all be modified to tune the prop-
erties of the monomers and allow optimization of good drug-like properties to achieve the
desired pharmacokinetic profile. The optimized monomers can be absorbed, distributed to tis-
sues, and enter cells. Once inside the cell, the monomers can bind the target directly, allowing
the target to drive self-assembly of the dimer. Alternatively, the monomers can re-equilibrate
inside the cell to form the dimer in solution, and the dimer can directly bind and inhibit the
target. The extent to which each pathway contributes to the inhibitory effect depends on the in-
trinsic affinities of the ligands for their respective binding sites on the target, connector length,
and the dimerization constant of the linkers employed. Either pathway leads to the target pro-
tein being bound by the dimers with a higher affinity and greater specificity than the constitu-
ent monomers. The key advantage of this approach is that it allows for the intracellular
generation of a large molecule inhibitor, well suited for targeting protein-protein interaction
surfaces, while maintaining the ability to capitalize upon the drug-like properties of the small
molecule components.

A variety of bioorthogonal linkers are amenable to this technology platform. We and others
have described atom-efficient aryl boronic acid linkers that can reversibly dimerize with vari-
ous catechols and cis-alkyl diol partners under aqueous conditions [1, 2, 3, 4] (Fig. 1B). The bo-
ronic acids and the partner diols establish equilibrium rapidly, with dimerization constants
typically in the μM to mM range [5, 6]. Importantly, the dimerization constant can be adjusted
via substituents. For example, the introduction of steric effects on either linker component dis-
favors boronate ester hydrolysis, shifting the monomer-dimer equilibrium towards dimer for-
mation, which results in improved dimerization constants [7, 8] and can translate into
improved potencies of the resulting dimeric inhibitor. Both boronic acid and diol linkers can
be appended to desired ligands through a wide range of connector moieties using facile syn-
thetic methods. This technology can be applied to any target comprising two or more proximal
binding sites that could be bridged with ligands bearing suitable connectors and linkers. Typi-
cally the dimers dissociate from the target with slower off-rates, which leads to prolonged inhi-
bition of the target.

Here we have applied this technology to develop inhibitors against the c-Myc (referred to as
Myc hereafter) transcription factor. Myc belongs to a family of transcription factors whose
other members include MycL and MycN and these transcription factors have important roles
in controlling cell proliferation, survival, and differentiation [9, 10]. Myc is normally tightly
regulated but its expression level can be significantly increased in cancer, and this is thought to
be a major driver of tumor biology. Myc activity can be deregulated through increased
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expression by either gene amplification [11] or gene translocation [12]. In more limited cases,
particularly in Burkitt’s Lymphoma, theMyc gene is mutated [13, 14] which can result in a
more stable protein [15, 16]. To function biologically, Myc forms a heterodimer with its part-
ner Max, and the resulting dimer binds to specific promoter motifs, recruits transcription acti-
vation complexes, and ultimately activates Myc-dependent genes. It is clear that inactivation of

Fig 1. Overview of the basis for generating self-assembling dimeric inhibitors of the Myc transcription factor. A) Schematic representation of the self-
assembling dimer approach. Individual monomers (Blue and Green) composed of ligand, connector and a paired bioorthoganol linker are delivered to the
cells, cross the plasmamembrane and react to form an active dimeric inhibitor in the cells. Dimer assembly may occur in the cellular milieu or on the target of
interest. B) Schematic representation of the boronic acid/diol equilibria utilized during formation of dimer. Trigonal planar, neutral species are in equilibrium
with the charged chiral tetrahedral species. For a given diol, in the cellular milieu at pH 7.4 the equilibria are determined by the pKas of the boronic acids
employed and by the pKas of the boronate esters formed. Racemization of the chiral charged species occurs very rapidly and the biological target will select
for the most preferred dimer. C) Summary of library design: Structures of the two parent molecules C01 (left) and C02 (right) and attachment positions;
connectors are either alkyl chains or PEG-units; R and R’ are linked to the connectors via amide or carbon bonds; synthetic details of selected library
members are provided in the supplementary experimental procedures.

doi:10.1371/journal.pone.0121793.g001
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Myc can lead to significant anti-tumor effects in mouse models of cancer [17, 18]. In addition,
functional inactivation of Myc in normal tissue using a dominant negative form (OmoMyc) is
well tolerated [19], supporting the concept that therapeutically targeting this pathway can be a
means to treat cancer.

Numerous direct and indirect methods have been developed to target Myc biology [20]. Re-
cently small molecules that inhibit the BET family of epigenetic reader proteins and impact
Myc gene expression have shown excellent pre-clinical efficacy in Myc-dependent tumor mod-
els [21, 22, 23] and are currently in clinical trials. Several groups have also reported small mole-
cule inhibitors that bind directly to Myc and inhibit its interaction with Max [24, 25]. These
inhibitors, originally introduced by Prochownik et al, bind with micromolar affinity and dis-
rupt the Myc:Max interaction, as well as inhibit proliferation of Myc-expressing tumor cell
lines. Two such small molecules, 10058-F5 and 10074-G5, have been shown to bind indepen-
dently and simultaneously to the disordered conformation of the basic helix-loop-helix leucine
zipper (bHLHZip) domain of Myc, thus inhibiting its interaction with Max [26, 27, 28]. Addi-
tionally, close analogs of 10058-F4 and 10074-G5 with similar and improved potencies have
been described [29, 30, 31, 32, 33].

We have utilized our technology platform to develop self-assembling dimeric inhibitors of
Myc using these previously described small molecules as our starting individual ligands. These
molecules are additionally modified with appended connectors and linkers designed to facili-
tate reversible dimer formation. We demonstrate that our new inhibitors directly bind to Myc
with improved affinity over the existing small molecule inhibitors, disrupt the Myc:Max inter-
action in vitro, and impact expression of MYC regulated genes in cells resulting in anti-prolif-
erative effects in Myc-expressing tumor cell lines.

Materials and Methods

Compound Synthesis
A full description of synthetic routes for the molecules described in this paper can be found in
S1 File.

Cell Culture, proliferation and Synergy analysis
K562 (CCL-243), Daudi (CCL-213), Raji (CCL-86) and MV4-11(CCL-9591) cells were pur-
chased directly from American Type Culture Collection (Manassas, VA) and routinely cul-
tured under recommended conditions. Growth and proliferation was determined by use of
Cell Titer 96 Aqueous One Solution (Promega, Madison, WI). All cells were plated at 10,000
cells per well in growth media in a clear 96 well plate. After 3 days of compound treatment re-
agent was added, and absorbance at 490 nm was read after incubation for 4 hours at 37°C. A
control plate of compound diluted in media at the same concentrations was treated in a similar
way and these values subtracted from the cell plate data to control for any compound interfer-
ence in the assay. Synergy was determined using the Bliss model of independence.

Cell lysis andWestern blotting
Drug treated cells were washed in PBS and lysed in RIPA buffer (supplemented with protease
and phosphatase inhibitors) (Sigma, St. Louis, MO) on ice for 30 minutes. Total protein con-
centrations were determined using a BCA kit (Thermo Scientific, Rockford, IL). Western blots
were performed by resolving proteins by SDS-PAGE and transfer to nitrocellulose membranes.
Membranes were probed with antibodies to: c-Myc (9E10) (sc-40); HRP conjugated GAPDH
(FL-335) (sc-25778 HRP) (all from Santa Cruz Biotechnology); Max (AF4304) (R&D Systems);
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Cleaved PARP (Asp214) (D64E10) XP (5625; Cell Signaling). Proteins were visualized using
horseradish peroxidase-conjugated secondary Mouse or Rabbit (1:5000) (GE Healthcare) or
Goat (1:1000) (R&D Systems) antibodies and the SuperSignal ELISA Femto Maximum Sensi-
tivity Substrate kit was used for detection (Thermo Scientific).

Surface Plasmon Resonance
All SPR experiments were performed on a Bio-Rad XPR36 instrument at 25°C. His-tagged
bHLH-LZ domain of human Myc protein (aa353-439, Cayman Chemicals, Ann Arbor, MI)
was immobilized in running buffer (20 mM Na-phosphate, pH 7.5, 300 mMNaCl, 4 mM KCl,.
05% Tween20) in the absence of DMSO at 25μL/min for 400 seconds on Bio-Rad HTE (Ni-
NTA) chips with a resulting RU value of about 4500 after immobilization. Compound binding
was analyzed in the same running buffer with a final DMSO concentration of 2%. Compounds
were injected at 30μL/min for 180 seconds with a dissociation time of 300 seconds. Injections
consisted of 5 concentrations of compounds plus a blank channel for reference that flowed
over all immobilized ligands in a matrix format. Regeneration steps were not required due to
the rapid dissociation of compounds. Equilibrium fits were performed with the ProteOn soft-
ware after inter-spot and reference channel subtractions.

Cell-free Myc:Max ELISA
High binding 96-well plates were coated with GST-conjugated full-length Max protein (Sino
Biologicals) at 1ng/μL in 100μl of PBS overnight at 4°C. The plate was washed 4x 200 μl/well
with PBS and blocked in 200 μl/well of 5% nonfat dry milk in PBS for 2 hours at room tempera-
ture. Full length Myc protein (Origene) was diluted to 1 ng/μL in Buffer A (50 mM Tris-HCl,
pH 7.4, 0.1 mM EDTA, 150 mMNaCl, 0.002% NP-40). Compounds were serially diluted in
100% DMSO and then sequentially diluted 1:100 into the Myc solution before incubation for
one hour at room temperature. For internal consistency, final DMSO concentrations were kept
at 2%. The blocked plate was washed 4x 200μl/well with Buffer A, before addition of 100 μl of
the Myc compound mixture. Plates were incubated for four hours at RT, and washed 4x 200 μl
Buffer A/well. Anti-Myc antibody (Cell Signaling) was diluted 1:1000 in 5% nonfat dry milk in
Buffer A. 100 μL/well diluted primary antibody was added to each well and incubated for one
hour at room temperature. Plates were washed 4x 200 μl/well Buffer A. HRP-conjugated goat
anti-rabbit antibody (GE Healthcare) was diluted 1:5000 in 5% nonfat dry milk in Buffer A.
100 μL/well diluted secondary antibody was added to each well and incubated for thirty min-
utes at room temperature. The plates were washed 4x 200 μL/well Buffer A. 50 μL/well of
FEMTO chemiluminescent reagent (Thermo Scientific) was added, and luminescence was im-
mediately read on a Victor X5 plate reader (PerkinElmer) with a 0.1 sec integration time. IC50s
were generated through non-linear fitting of data with prism (GraphPad).

Electrophoretic mobility shift assay (EMSA)
Human c-Myc (NP_002458.2) containing the bHLH-LZ domain was cloned into a modified
pET21a vector and then transformed into the BL21StarDE3 expression system, expressed, and
purified at Cayman Chemical. The construct consists of an N-terminal 6xHis tag with a TEV
cleavage site, c-Myc residues Asn352 to Ala439, and a GGCD C-terminal extension (molecular
weight 12.9 kDa). Compounds were added to 200 ng c-Myc in reaction buffer (100 mM KCL,
1 mM DTT, 1 mM EDTA, 50 mM Tris pH7.4, 5mMMgCl2, 0.002% NP40) and incubated for
60 minutes at room temperature. 350 ng His-tagged and GST-tagged full-length human Max
protein (Sino Biologicals, #12885-H20B) was added, and the reaction was incubated for an ad-
ditional 60 minutes. Finally, annealed double-stranded E-box containing DNA oligonucleotide
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with sequence 5’-GATCAGTTGACCACGTGGTCTGGG-3’ was added to a final concentra-
tion of 100 nM for twenty minutes incubation at room temperature. The final concentration of
DMSO was kept constant at 2%. The protein-DNA complexes (final volume 10 μl) were re-
solved on NativePAGE Novex 4–16% Bis-Tris Protein Gels (Life technologies, #BN1002BOX)
at 4°C with pre-chilled TBE (89 mM Tris-borate, 1 mM EDTA) at 125V for 90 minutes. SYBR
Green EMSA Nucleotide Acid gel stain (Molecular Probes, #E33075) was used to stain dsDNA
and DNA-protein complexes. Images were captured with an Alpha Innotech FluorChem Q im-
ager installed with AlphaView software.

RNA Isolation and Real Time-PCR
RNeasy mini kit (Qiagen) was used for RNA purification in accordance with manufacturer’s
instructions. First-strand complementary DNA was synthesized and gene expression analyzed
using a human Myc-targets PCR array (SABiosciences, #PAHS-177Z) according to the
manufacturers protocol.

Results

The design and screening of a combinatorial library based on two
distinct ligands to identify self-assembling dimeric inhibitors of Myc
We have established a novel technology platform that aims to develop inhibitors versus chal-
lenging drug targets through the use of reversible bioorthogonal linker chemistry. Here we
have applied this technology to develop inhibitors of the Myc transcription factor. The small
molecule inhibitors 10058-F4 and 10074-G5 and their analogs bind to Myc and block its inter-
action with Max. In addition they have been shown to drive an anti-proliferative effect in Myc
driven cell lines at high concentrations [26]. Recently, bivalent probes such as LinkN1 that link
the core scaffolds of these molecules were described and are more potent Myc inhibitors com-
pared to either of the individual scaffolds in biochemical and cell assays [30](S1 Fig.). These
data suggested that linking these two core scaffolds (referred to here as C01 and C02; S1 Fig.)
using our approach could lead to a more potent and selective inhibitor of the Myc transcription
factor, with potential for improved monomer pharmacokinetic profiles relative to the larger bi-
valents. We therefore designed and synthesized two small libraries of monomers by appending
selected catechol/alkyl diol and boronic acid linkers via appropriate connectors to the C01 and
C02 ligands, respectively (Fig. 1C). We designate monomers bearing boronic acid linkers as
“E” (electrophilic) monomers and those bearing catechol or alkyl diol linkers as “N” (nucleo-
philic) monomers. The libraries contained 10 “E” and 12 “N”monomers respectively, which
can interconnect to form 120 dimers, allowing us to efficiently identify “E+N” pairs that most
synergistically inhibit Myc. These dimers have maximal spanning distances between their li-
gands of approximately 7–25Å and feature linker regioisomers for each particular spanning
distance.

We screened pairwise combinations of monomers from our libraries in a cell proliferation
assay. Increasing concentrations of each compound were dosed in an 8x6 matrix format and
their effects on cell proliferation monitored. Our goal was to identify combinations that showed
a synergistic inhibition of cell proliferation. The theoretical additive effect on proliferation for
each combination, based on the activity of each monomer, was calculated using Bliss analysis
[34], and combinations that showed activity greater than this predicted value were considered
to be synergistic (S2 Fig.). The majority of the combinations were additive in nature, a result
consistent with the combination of the two parent ligands C01 and C02 (S1 Fig.). We identified
a number of combinations that were synergistic, and representative graphs showing dose
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dependent inhibition of proliferation with 2 different combinations (E07+N12 and E08+N11)
are shown (Fig. 2 A and B). The structures of these molecules are shown in Fig. 2C. There was
no activity of the individual compounds E07, E08, N12, or N11 in the proliferation assay at
concentrations up to 30 μM. However, the activity of E07 (Fig. 2A) or E08 (Fig. 2B), was dra-
matically improved in the presence of 10 μMN12 or 30 μMN11 respectively. In addition, the
activity of the E07+N12 and E08+N11 combinations were significantly greater than the pre-
dicted additive effect (Bliss line), indicating synergy between these compounds.

These initial screening results indicated that only select combinations were able to drive a
synergistic effect in the cell proliferation assay. As the library was initially designed to encom-
pass a range of connector lengths, orientations and dimerization propensities, these results sug-
gest that certain lengths, orientations and linker combinations are preferred to drive the
synergistic response in a cellular readout. A more extensive discussion around the structure-ac-
tivity and structure-property relationships between these different molecules will be presented
elsewhere, and so for the purposes of this report we have focused on the combinations that
showed the most significant synergy for further validation.

Fig 2. Select combinations of monomers have synergistic activity in a cell proliferation assay. (A and B) Dose-response curves for two different
combinations, E07+N12 (A) and E08+N11 (B)tested in the cell proliferation screen. In each case the dose-response curve for each individual monomer is
plotted. The dose-response curves for the predicted additive response (Bliss) and the combination experimental data are plotted with an increasing
concentration of E07 orE08 in the presence of N11 or N12 (30 μM). The data is plotted as a mean ± SEM from 3 independent experiments.

doi:10.1371/journal.pone.0121793.g002
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Myc directed self-assembling dimers bind to Myc and block its
interaction with Max
Having identified specific combinations of monomers that were able to drive an anti-prolifer-
ative response in Daudi cells, we next confirmed the ability of these monomers to form dimers
at the concentration range used in the proliferation assays. We combined the Myc monomeric
inhibitors E07 and N11 or E08 and N12 in a 1:1 mixture using 10μM of each compound and
analyzed for the presence of dimer using LC-MS. At these concentrations we observed 67%
and 24% dimer respectively (S3 and S4 Figs.), confirming that these monomers were able to
form significant amounts of dimer at the concentrations used in these experiments.

We next analyzed whether these dimeric inhibitors could directly bind to Myc. To do this
we developed a Surface Plasma Resonance (SPR) assay to compare the binding affinities of the
monomers to that of the dimeric inhibitors. We immobilized the bHLHZip domain of Myc to
the surface of a Ni-NTA chip via a His-tag and measured binding affinities for the monomers
or dimers. We observed weak binding of each monomer (mean Kd values E07 = 42 μM and
N12>50 μM. Fig. 3A and Table 1) consistent with a recent report using the parental ligands
10058-F4 and 10078-G5, which showed affinities of 39.7 μM and 31.7 μM respectively for Myc
in a similar SPR assay [35]. In contrast, the combination of E07+ N12 bound with a Kd of
8.6 μM, a notable improvement over the individual monomers. We observed similar data with
the E08+N11 dimer. Notably, we observed saturation binding of the combinations with stoichi-
ometry of dimer binding less than one, ruling out the possibility that compound aggregation
caused by dimerization was responsible for the enhanced binding observed.

In order to confirm that the dimeric inhibitor was driving the improved binding to Myc, we
synthesized an analog of N12 that was similar in every aspect except it lacks the diol group re-
quired for reaction with its boronic acid counterpart (C12, Fig. 2C). C12 alone or in combina-
tion with E07 had Kd values>50 μM (Fig. 3A and Table 1), supporting the conclusion that the
ability to form dimer was important for the enhanced binding of these monomers.

We next asked whether the binding of these dimers to Myc could disrupt the interaction
with its transcriptional partner Max. We developed an ELISA using purified Myc and Max pro-
tein that allowed us to measure effects on Myc:Max binding. The ELISA plate was initially coat-
ed with Max protein and the compounds pre-incubated with Myc protein prior to addition to
the Max-coated plate. After extensive washing, Myc binding to Max was detected using an
anti-Myc antibody. We initially tested the parent ligand molecules, C01 and C02, and observed
little inhibition with either of the monomers (IC50 >30 μM) or the combination (IC50 23 μM)
on the Myc:Max interaction (S1 Table). We next focused on one of our identified dimeric in-
hibitors, E07+N12 and similarly observed that the individual monomers E07 and N12 showed
little inhibition of the Myc:Max interaction (IC50 24 μM and>30 μM respectively; Fig. 3B and
Table 1). In contrast, the combination of E07+N12, dosed in a 1:1 ratio, inhibited Myc binding
to Max in a dose dependent fashion (IC50 3.3 μM) (Fig. 3B and Table 1), an 8 fold enhancement
over the most active individual monomer. We observe similar effects for the dimeric inhibitor
E08+N11 (Table 1).

The control combination of C12 with E07 failed to show activity in the Myc:Max ELISA be-
yond the activity of E07 alone (Fig. 3B), suggesting that the ability of E07+N12 to dimerize was
driving the improved inhibitory effect. Limited effects were observed with the additional non-
dimerizable control combination E08+C11 (Table 1).

Self-assembling dimers selectively inhibit Myc:Max binding to DNA
Having confirmed that the dimers bind to Myc and block its binding to Max we next wanted to
confirm that these inhibitors selectively blocked the biological activity of Myc in a cell-free
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assay. The formation of the Myc:Max heterodimer is required for its ability to bind to DNA se-
quences and trigger transcriptional activation of Myc-dependent genes. Max has the additional
capacity to form homodimers that can bind to the same DNA sequences but generally repress
gene expression [9, 10]. We therefore performed an electrophoresis gel mobility shift assay to
determine if our inhibitors had selectivity for inhibiting the binding of Myc:Max heterodimers
to DNA over Max:Max homodimers.

Incubation of Max protein with the E-box oligonucleotide resulted in a DNA band shift in-
dicative of Max:Max homodimers (Fig. 4A). Addition of Myc resulted in a decrease in the
amount of Max:Max homodimers and the appearance of Myc:Max heterodimers in complex
with DNA. Neither of the two monomers, E07 or N12, had any noticeable effect on the Myc:
Max or Max:Max complexes, however E07+N12 caused a dose-dependent decrease in the levels
of the Myc:Max complex. Notably the decrease in Myc:Max complex is inversely correlated
with an increase in the levels of the Max:Max complex, suggesting the dimer is specifically
blocking the Myc:Max interaction, freeing Max to homodimerize and bind to the DNA.

Fig 3. The dimeric inhibitors directly bind to Myc and block its interaction with Max. A) Inhibitors show
saturating binding of Myc in SPR experiments. Equilibrium Response Units (RU), normalized to maximal
saturated values in individual experiments, are plotted (mean ± SEM) as a function of inhibitor concentration.
B) Dose response curves for the inhibition of Myc:Max interaction as determined by ELISA. The data are
represented as a fraction of activity compared to a DMSO treated control sample and are plotted as a mean of
2–5 experiments ± SD. The X-axis refers to the concentration of each monomer used.

doi:10.1371/journal.pone.0121793.g003
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As further evidence that the formation of the dimeric inhibitor was critical for the inhibitory
activity, we performed similar experiments with the non-dimerizable control monomer C12
(Fig. 4B). In contrast to E07+N12, the combination of E07+C12 had no effect on the binding of

Table 1. Inhibition of cell-free MYC-MAX heterodimer formation and direct MYC binding*.

ELISA (IC50) SPR (Kd)

E07 24 ± 7.4 42 ± 10

E08 >30 47 ± 9.0

N11 >30 >50

N12 >30 >50

C11 >30 >50

C12 >30 >50

E07+N12 3.3 ± 1.8 8.6 ± 1.3

E08+N11 12 ± 3.7 17 ± 2.0

E07+C12 >30 >50

E08+C11 >30 >50

*Average IC50 values (μM) with standard deviation from the MYC-MAX ELISA and average KD values (μM)

from the MYC SPR assay, as described in Experimental Procedures. IC50s and KDs of E, N, and C

monomers alone are listed first, followed by IC50s and KDs from equimolar titrations of combinations of

monomers. C11 and C12 are non-dimerizable control compounds corresponding to N11 and

N12, respectively.

doi:10.1371/journal.pone.0121793.t001

Fig 4. The dimeric inhibitors block Myc:Max but not Max:Max binding to DNA.Gel mobility shift assay
showing the effects on Myc:Max DNA complex formation by the dimeric inhibitor E07+N12 (A) and the non-
dimerizable control combination E07+C12 (B). The bands that represent protein-DNA complex or naked DNA
are shown on the right hand side of each panel. The concentrations indicated are in μM.

doi:10.1371/journal.pone.0121793.g004
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the Myc:Max or Max:Max complexes to DNA. These data are consistent with the effects of
these compounds in the SPR assay and ELISA.

Collectively these cell-free assay data demonstrate that the self-assembling dimeric inhibi-
tors identified in the cell assays can directly bind to Myc and inhibit its interaction with Max,
supporting an on-target mechanism of action for these inhibitors. Further, the use of non-
dimerizable control monomers confirms that the ability to form a large molecular weight di-
meric inhibitor is key to the ability to target the Myc protein.

Self-assembly of dimer is critical for cellular activity of Myc inhibitors
Our cell-free experiments had clearly shown that the ability for self-assembly of the dimer was
important in driving the improved inhibitory effect versus the Myc protein. To test this in a cel-
lular context we compared the effect on cell viability of the E08+N11 dimer versus its non-
dimerizable control combination E08+C11. Treatment of Daudi cells with E08+N11 caused a
significant reduction in cell viability after 72 hours of treatment, whereas the E08+C11 combi-
nation had no effect on cell viability (Fig. 5A, left panel). Previous reports have indicated that
treatment of cells with relatively high concentrations (>50 μM) of the small molecule Myc in-
hibitors 10058-F4 and 10078-G5 cause a decrease in Myc protein levels [31, 35] and so we used
this as a measure of the impact of the dimers on the Myc pathway. Consistent with the effect
on cell viability we observed a time-dependent decrease in Myc protein levels, correlated with
induction of apoptosis with E08+N11 but not with E08+C11 (Fig. 5A, right panel). Identical re-
sults were observed in a second Myc over-expressing cell line Raji (Fig. 5B). In contrast treat-
ment of K562 cells, expressing a BCR-Abl oncogene, with E08+N11 had a modest effect on cell
viability, although this was not statistically different from N11 alone, and there was little impact
on Myc protein levels (Fig. 5C). Similar effects on cell viability and Myc protein levels were also
observed for the dimer E07+N12 but not its non-dimerizable control E07+C12 (S5 Fig.).

Fig 5. Dimeric inhibitors of Myc drive anti-proliferative effects in Myc over-expressing cell lines that are correlated with a decrease in Myc protein
levels. A) Daudi cells were treated with the indicated compounds or combinations for 72 hours and cell viability measured (left panel, * p< 0.05, ** p<0.001,
ns not significant). In a parallel experiment Daudi cells were treated with E08+N11 or E08+C11 combinations for the indicated times and protein lysates
probed with the indicated antibodies (right panel). E08 was used at 10μM and N11 or C11 were used at 30μM. (B) Raji and (C) K562 cells were treated and
analyzed as detailed in (A).

doi:10.1371/journal.pone.0121793.g005
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To ensure that the decrease in Myc protein levels was selective and not a consequence of ex-
tensive protein degradation in the cell we monitored the levels of a number of other proteins,
ranging in half life, in the Daudi and Raji cells after treatment with E08+N11 (S6 Fig.). The lev-
els of these proteins are largely unaffected by E08+N11 treatment, other than a consistent mod-
est decrease in protein levels at 24 hours post-treatment in the Daudi cells. This most likely
correlates with the early onset of extensive apoptosis in this cell line in contrast to the Raji cells.

Self-assembling dimers inhibit MYC-dependent gene expression
Given that the primary role of Myc is to regulate gene expression, we next analyzed the effects
of the dimeric inhibitors on a panel of Myc-dependent genes (Fig. 6A). We treated Daudi and
Raji cells with the active dimer E08+N11 or its non-dimerizable control E08+C11 and analyzed
gene expression using a panel of Myc-dependent genes 24 hours post-treatment. In both cell
lines we observed a significant number of genes that were downregulated in response to E08+
N11 treatment but not E08+C11, consistent with Myc’s role as a transcriptional activator. A

Fig 6. Self-assembling dimeric inhibitor E08+N11, but not the non-dimerizable control E08+C11,
inhibits Myc-dependent gene expression.Daudi (A) and Raji (B) cells were treated with E08+N11 or E08+
C11 for 24 hours and gene expression levels were analyzed using a humanMyc-target PCR array. The 50
genes that change expression the most relative to a DMSO control from each cell line are shown.

doi:10.1371/journal.pone.0121793.g006
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limited number of genes were upregulated in response to treatment but it was notable that in
each cell line the cell cycle inhibitors CDKN2B or CDKN1B genes were upregulated by E08+
N11 but not E08+C11, consistent with the effects on cell viability in response to these treat-
ments. Similar effects on Myc-dependent gene expression were observed with the dimeric in-
hibitor E07+N12 but not its non-dimerizable control E07+C12 (S7 Fig.). Notably the
expression of Myc mRNA is decreased in response to E08+N11 in both the Daudi and Raji
cells but not in the K562 cells (S7 Fig.), consistent with the effects on Myc steady state protein
levels. This suggests that E08+N11 is not acting via a direct inhibition of Myc transcription but
that the decrease in Myc mRNA is an indirect consequence of significant inhibition of the Myc
function in these cell backgrounds.

Discussion
Direct targeting of the Myc transcription factor has long been considered a valuable, but largely
intractable approach to treating many different types of cancer. Extensive research has been
carried out on Myc’s biological function clearly demonstrating its important role in tumor biol-
ogy, but no approaches have yet resulted in the successful development of therapeutics that di-
rectly target Myc. The intrinsic disorder of the bHLHZip domain of monomeric Myc defies
structural characterization approaches such as crystallography, and implies the lack of well-de-
fined binding pockets that could be utilized by small molecules to block its biological activity.
As such, Myc has long been considered an undruggable target, and recent attention has instead
focused on targeting Myc in an indirect manner. In addition to promising RNAi-based ap-
proaches (e.g. DCR-M1711), the recent discovery and characterization of small molecule inhib-
itors (JQ1 and iBET762) which target the BET family of epigenetic reader proteins have proven
to be effective in a Myc context [22, 36], and they are currently undergoing evaluation in clini-
cal trials. Due to the pan-BET inhibitory profile of these drugs it is likely they will have wide
ranging effects beyond selective Myc inhibition, and so it remains unclear what impact this will
have on their clinical safety profile. Thus, a potent and selective inhibitor that directly targets
the Myc protein is likely to have significant clinical utility.

We have utilized a novel chemistry platform to identify dimeric inhibitors of Myc. The basis
of our approach is to employ bioorthogonal linker chemistries that allow the intracellular self-
assembly of two distinct small molecules monomers—each comprising a ligand, a connector
and a bioorthogonal linker element—into a large dimeric inhibitor molecule designed to be ca-
pable of more potent and selective inhibition of protein:protein interaction targets like Myc.
The rapidly reversible nature of the linker chemistry under physiological conditions is such
that the small molecule monomeric species are amenable to improvements in their absorption
from the gastrointestinal tract, distribution to target tissues, and penetration into the target cell
where intracellular dimeric formation can drive more effective Myc inhibition. Since the
monomers themselves are optimized for binding to Myc, it is apparent that dimer self-assem-
bly on the target is thermodynamically favored in these circumstances. The key advantage of
this approach is that it encompasses the best attributes of small molecules, such as ease of opti-
mization and bioavailability, with the ability to target larger surface areas on the protein of in-
terest, thus enhancing potency and selectivity.

Starting from previously published small molecule inhibitors of Myc that can independently
and simultaneously bind to two distinct sites [27, 28], we designed a small directed library to
identify dimeric inhibitors of Myc. Our screening approach identified a small number of di-
meric inhibitors that bound and inhibited Myc function in biophysical, biochemical, and cellu-
lar assays. Importantly, these effects were driven by the ability of successful monomer pairs to
dimerize either upon the Myc protein target or through subsequent binding of the preformed
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dimer to Myc. The small molecules on which we based our library design consistently showed
weak activity in our cell-free or cell assays (IC50 >30 μM), in agreement with previous reports
using similar molecules [26, 29]. Our monomers, with connector and linker groups attached,
also show very little activity as individual inhibitors, but the self-assembling dimeric inhibitors
have provided a significant improvement in activity.

The dimeric inhibitors appear selective towards Myc for a number of reasons. Firstly, using
SPR we demonstrate direct binding of the dimeric inhibitors to Myc with improved affinities in
comparison to their constituent monomers. Secondly although the dimerization domains of
Myc and Max share extensive structural similarity, our gel-shift experiments demonstrate that
the dimeric inhibitors only inhibit the Myc:Max interaction and not the Max:Max interaction,
implying selective Myc binding. Of note, our gel shift experiments used the bHLHZip domain
of Myc, confirming that our dimers are binding to the same domain first postulated for the
original small molecules [27]. Thirdly, only select combinations of monomers from our library
were able to demonstrate an inhibition of the Myc:Max interaction, suggesting that connector
and linker properties are critical for the formation of an active dimer. It should be noted that
this minimizes the possibility that non-specific binding of a large dimer is responsible for the
inhibitory effects we observe, as pairs with similar capacity to form a dimer do not show any in-
hibition of the Myc:Max interaction. Fourthly, we observe anti-proliferative effects with dimers
in two Myc over-expressing cell lines but not in a BCR-Abl dependent line. The anti-prolifer-
ative effects are correlated with selective decreases in the level of Myc protein, an effect that has
previously been observed with 10058-F4 and 10074-G5 like molecules [31, 35]. Finally, we ob-
serve an impact on Myc-dependent gene expression with the dimeric inhibitor but not the
non-dimerizable control combination, confirming the expected functional consequences of di-
rectly targeting the Myc protein. Taken together these data strongly suggest that modifying
and reversibly linking these two parents molecules has generated a selective dimeric inhibitor
of Myc with enhanced potency over the component monomeric inhibitors.

These first steps in identifying a dimeric inhibitor of Myc provide a good starting point for
further optimization to develop an inhibitor that may have the correct attributes to move into
clinical testing. As well as modifications in the core ligands to improve target binding proper-
ties, as is done with traditional medicinal chemistry approaches, optimization of the connector
and linker groups could significantly improve dimerization constants, cell permeability, and
the metabolic profile of these inhibitors. Once optimized, there are a large number of indica-
tions where these inhibitors may find clinical utility. Many hematological cancers exhibit func-
tional deregulation of Myc through genomic amplification or translocation of the Myc gene
while many solid tumors, such as colorectal and lung cancer are also reported to have aberrant
function of MYC, primarily caused by genomic amplification [9, 10]. In addition, the Myc fam-
ily member N-Myc has been shown to be amplified in neuroblastoma and lung cancer, and our
dimeric inhibitors would be expected to have activity versus N-Myc as well as Myc due to the
high homology between their bHLHZip domains. Indeed, recent reports describe the inhibition
of N-Myc in neuroblastoma cell lines with the small molecule 10058-F4 [35, 37], suggesting a
similar, more potent effect may also be expected with our dimeric inhibitors.

In summary we have described a novel technology platform that allows for the intracellular
generation of large dimeric inhibitors from monomeric components allowing the targeting of
challenging or intractable targets inside the cell, exemplified here using Myc as the biological
target. This approach is readily adaptable to a wide range of targets, either using pre-existing
well-characterized ligands, or newly identified small molecules, that bind to proximal binding
sites on their target. We believe that this robust platform can be broadly deployed to deliver po-
tent and highly selective dimeric inhibitors against drug targets that have so far resisted more
traditional approaches.
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Supporting Information
S1 File. Synthetic routes for compound synthesis.
(DOCX)

S1 Fig. Activity of parental ligands and bivalents. (A) Structures of C01 (10058-F4 analog),
C02 (10074-G5 analog) and the bivalent Link N1 formed by irreversibly linking the two mole-
cules (B) Proliferation assay in Daudi cells showing effects of C01 or C02 alone or the combina-
tion of the two molecules dosed in a 1:1 ratio, and LinkN1. The data is presented as a fraction
of proliferation with respect to the DMSO treated wells and is a mean ± SEM of two indepen-
dent experiments each with triplicate wells.
(TIF)

S2 Fig. Results of combination screening of monomer libraries. Schematic representation of
the results of pairwise combinations of monomers in 72 hour proliferation assay in Daudi cells.
Light grey box = no synergy; Dark Grey Box = modest synergy; Black box = significant syner-
gy.
(TIF)

S3 Fig. LCMS analysis of monomer-dimer ratios. LCMS (non_polar_3min_1500 run in neg-
ative ion mode) profiles of monomers alone or mixtures of monomers in a HEPES pH 7.5 buff-
er with 2% DMSO. (A) E07 and N12 at 10 μM in a 1:1 ratio (B) N12 at 10 μM (C) E07 at 10μM
(D) E07 and C12 at 10 μM in a 1:1 ratio (E) C12 at 10 μM. (F) E07 at 10 μM
(TIF)

S4 Fig. LCMS analysis of monomer-dimer ratios. LCMS (non_polar_3min_1500 run in neg-
ative ion mode) profiles of monomers alone or mixtures of monomers in a HEPES pH 7.5 buff-
er with 2% DMSO. (A) E08 and N11 at 10 μM in a 1:1 ratio (B) N11 at 10 μM (C) E08 at
10 μM (D) E08 and C11 at 10 μM in a 1:1 ratio (E) C11 at 10 μM. (F) E08 at 10 μM
(TIF)

S5 Fig. Effects of E07+N12 on cell viability and the Myc pathway. (A, C, and E) Daudi (A),
MV4-11 (C)) or K562 (E) cells were treated with increasing doses of either E07+N12 or E07+
C12 in a 1:1 ratio and the effect on proliferation assayed. The X-axis refers to the concentration
of each individual compound, so the total inhibitor concentration will be 2 fold higher at each
data point. The data is plotted as a mean ± SEM from 3 independent experiments. (B, D, and
F) Daudi (B), MV4-11 (D) or K562 (F) were treated with increasing doses of either E07+N12
or E07+C12 in a 1:1 ratio and the levels of Myc, Max and GAPDH protein analyzed by western
blotting after 4 hours of treatment. The relative levels of the Myc protein after correction to
GAPDH levels are shown below each Western blot panel.
(TIF)

S6 Fig. Effects of Myc dimers on steady state levels of intracellular proteins. Protein lysates
from the experiment shown in Fig. 5 were probed with the indicated antibodies. Daudi cells
(A) and Raji cells (B) are shown.
(TIF)

S7 Fig. Effects of E07+N12 on Myc-dependent gene expression. (A) Daudi cells were treated
E07+N12 (10μM + 10 μM) for 4, 8 or 24 hours and the non-dimerizable control combination
E07+C12 (10 μM + 10μM) for 24 hours. Gene expression levels were analyzed using a human
Myc-target PCR array. Data are representative form two independent experiments. Only those
genes that showed expression level changes<-1.8 or>1.8 fold, with respect to DMSO controls,
at any time point or with any treatment are shown. (B) Daudi, Raji and K562 cells were treated
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with E08+N11 or E08+C11 (10 + 30 μM) for 24 hours and the levels of Myc mRNA analyzed
by RT-PCR.
(TIF)

S1 Table. Parent ligand inhibition of cell-free MYC-MAX heterodimer formation.
(DOCX)

Acknowledgments
The authors wish to thank Colin Goddard for extensive discussion and critical comments on
the experiments and manuscript, Sarah Giardina for her contributions to the evaluation and
validation of linker chemistries for the Coferon platform, Meizhong Jin for input on early
chemistry designs, Claire Ambrosino for cell culture support and Maureen Cardone for
administrative support.

Author Contributions
Conceived and designed the experiments: JW KWF DSW LDA EWM STMP. Performed the
experiments: DR DSW YP RS SR. Analyzed the data: JW DSW DR YP RS SR EWM ST. Wrote
the paper: JW EWMKWFMP ST. Platform development work: LDAMP DEB FB.

References
1. Barany F, Pingle M, Bergstrom D, Giardina SF (2009) Coferons and methods of making and using

them (WO2009126290 A3).

2. Springsteen G, Wang B (2002) A detailed examination of boronic acid-diol complexation. Tetrahedron
58: 5291–5300.

3. Shin SB, Almeida RD, Gerona-Navarro G, Bracken C, Jaffrey SR (2010) Assembling ligands in situ
using bioorthogonal boronate ester synthesis. Chem Biol. 17: 1171–1176. doi: 10.1016/j.chembiol.
2010.09.008 PMID: 21095566

4. Demetriades M, Leung IK, Chowdhury R, Chan MC, McDonough MA, Yeoh KK, et al.(2012) Dynamic
combinatorial chemistry employing boronic acids/boronate esters leads to potent oxygenase inhibitors.
Angew Chem Int Ed Engl. 51: 6672–6675. doi: 10.1002/anie.201202000 PMID: 22639232

5. Yan J, Springsteen G, Deeter S, Wang B (2004) The relationship among pKa, pH and binding constants
in the interactions between boronic acids and diols- it is not as simple as it appears. Tetrahedron 60:
11205–11209.

6. Hall DG (2011) Structure, properties and preparation of boronic acid derivatives. Overview of their reac-
tions and applications. In: Dennis Hall editor. Boronic Acids- Preparation, Applications in Organic Syn-
thesis: Wiley-VCH Verlag GmbH & Co. KGaA. pp 1–133.

7. Roy CD, Brown HC (2007) Stability of boronic esters—Structural effects on the relative rates of transes-
terification of 2-(phenyl)-1,3,2-dioxaborolane. J. Organomet. Chem. 692: 784–790.

8. Bernardini R, Oliva A, Paganelli A, Menta E, Grugni M, De Munari S, et al. (2009) Stability of boronic es-
ters to hydrolysis: a comparative study. Chem. Lett. 38: 750–751

9. Dang CV (2012) Myc on the path to cancer. Cell 149: 22–35 doi: 10.1016/j.cell.2012.03.003 PMID:
22464321

10. TanseyWP (2014) Mammalian Myc proteins and cancer. New J. Science, Article ID 757534, doi: 10.
1155/2014/757534

11. Beroukhim R, Mermel CH, Porter D, Wei G, Raychaudhuri S, Donovan J, et al. (2010) The landscape of
somatic copy-number alteration across human cancers. Nature 463: 899–905. doi: 10.1038/
nature08822 PMID: 20164920

12. Loven J, Hoke HA, Lin CY, Lau A, Orlando DA, Vakoc CR, et al. (2013) Selective inhibition of tumor on-
cogenes by disruption of super-enhancers. Cell 153: 320–334. doi: 10.1016/j.cell.2013.03.036 PMID:
23582323

13. Bhatia K, Huppi K, Spangler G, Siwarski D, Iyer R, Magrath I (1993) Point mutations in the c-Myc trans-
activation domain are common in Burkitt’s lymphoma and mouse plasmacytomas. Nat. Genetics 5:
56–61.

Dimeric Inhibitors of Myc

PLOS ONE | DOI:10.1371/journal.pone.0121793 April 15, 2015 16 / 17

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0121793.s009
http://dx.doi.org/10.1016/j.chembiol.2010.09.008
http://dx.doi.org/10.1016/j.chembiol.2010.09.008
http://www.ncbi.nlm.nih.gov/pubmed/21095566
http://dx.doi.org/10.1002/anie.201202000
http://www.ncbi.nlm.nih.gov/pubmed/22639232
http://dx.doi.org/10.1016/j.cell.2012.03.003
http://www.ncbi.nlm.nih.gov/pubmed/22464321
http://dx.doi.org/10.1155/2014/757534
http://dx.doi.org/10.1155/2014/757534
http://dx.doi.org/10.1038/nature08822
http://dx.doi.org/10.1038/nature08822
http://www.ncbi.nlm.nih.gov/pubmed/20164920
http://dx.doi.org/10.1016/j.cell.2013.03.036
http://www.ncbi.nlm.nih.gov/pubmed/23582323


14. Love C, Sun Z, Jima D, Li G, Zhang J, Miles R, et al. (2012) The genetic landscape of mutations in Bur-
kitt lymphoma. Mat. Genet. 44: 1321–1325.

15. Salghetti SE, Kim SY, TansyWP (1999) Destruction of Myc by ubiquitin-mediated proteolysis: cancer-
associated and transforming mutations stabilize Myc. EMBO J. 18: 717–726. PMID: 9927431

16. Bahram F, von der Lehr N, Cetinkaya C, Larsson LG (2000) c-Myc hotspot mutations in lymphoma re-
sult in inefficient ubiquitination and decreased proteasomemediated turnover. Blood 95: 2104–2110.
PMID: 10706881

17. Jain M, Arvanitis C, Chu K, DeweyW, Leonhardt E, Trinh M, et al. (2002) Sustained loss of a neoplas-
toic phenotype by brief inactivation of Myc. Science 297: 102–104. PMID: 12098700

18. Shachaf CM, Kopelman AM, Arvanitis C, Karlsson A, Beer S, Mandl S, et al. (2004) Myc inactivation un-
covers pluripotent differentiation and tumor dormancy in hepatocellular cancer. Nature 431: 1112–
1117. PMID: 15475948

19. Soucek L, Whitfield J, Martins CP, Finch AJ, Murphy DJ, Sodir NM, et al. (2008) Modelling Myc inhibi-
tion as a cancer therapy. Nature 455: 679–683. doi: 10.1038/nature07260 PMID: 18716624

20. Prochownik EV, Vogt PK (2010) Therapeutic targeting of Myc. Genes & Cancer 1: 650–659.

21. Dawson MA., Prinjha RK, Dittmann A, Giotopoulos G, Bantscheff M, ChanWI, et al. (2011) Inhibition of
BET recruitment to chromatin as an effective treatment for MLL-fusion leukemia. Nature 478: 529–533.
doi: 10.1038/nature10509 PMID: 21964340

22. Mertz JA, Conery AR, Bryant BM, Sandy P, Balasubramanian S, Mele DA, et al. (2011) Targeting MYC
dependence in cancer by inhibiting BET bromodomains. Proc. Natl. Acad. Sci. 108: 16669–74. doi: 10.
1073/pnas.1108190108 PMID: 21949397

23. Zuber J, Shi J, Wang E, Rappaport AR, Herrmann H, Sison EA, et al. (2011) RNAi screen identifies
Brd4 as a therapeutic target in acute myeloid leukemia. Nature 479: 524–528.

24. Fletcher S, Prochownik ED (2014) Biochim. Biophys. Acta. doi: 10.1016/j.bbagrm.2014.03.005

25. Hart JR, Garner AL, Yu J, Ito Y, Sun M, Ueno L, et al. (2014) Inhibitor of MYC identified in a Krohnke
pyridine library. Proc. Natl. Acad. Sci. 111:12556–12561. doi: 10.1073/pnas.1319488111 PMID:
25114221

26. Yin X, Giap C, Lazo JS, Prochownik EV (2003). Low molecular weight inhibitors of Myc-Max interaction
and function. Oncogene 22: 6151–6159. PMID: 13679853

27. Follis AV, Hammoudeh DI, Wang H, Prochownik EV, Metallo S (2008) Structural rationale for the cou-
pled binding and unfolding of the c-Myc oncoprotein by small molecules. Chem Biol. 15: 1149–1155.
doi: 10.1016/j.chembiol.2008.09.011 PMID: 19022175

28. Hammoudeh DI, Follis AV, Prochownik EV, Metallo SJ (2009) Multiple independent binding sites for
small molecule inhibitors on the oncoprotein c-Myc. JACS 131:7390–7401.

29. Wang H, Hammoudeh DI, Follis AV, Reese BE, Lazo JS, Metallo SJ, et al. (2007) Improved low molec-
ular weight Myc:Max inhibitors. Mol. Cancer Ther. 6: 2399–2408. PMID: 17876039

30. Metallo S, Prochownik EV, Follis AV (2012) Linked Myc-Max small molecule inhibitors. (WO
2010083404 A2)

31. Wang H, Chauhan J, Hu A, Pendleton K, Yap JL, Sabato PE, et al. (2013) Disruption of Myc-Max here-
todimerization with improved cell-penetrating analogs of the small molecule 10074-G5. Oncotarget 4:
936–947. PMID: 23801058

32. Yap JL, Wang H, Hu A, Chauhan J, Jung K-Y, Gharavi RB, et al. (2013) Pharmacophore identification
of c-Myc inhibitor 10074-G5. Bioorg. Med. Chem. Lett. 23: 370–374. doi: 10.1016/j.bmcl.2012.10.013
PMID: 23177256

33. Chauhan J, Wang H, Yap JL, Sabato, PE, Hu A, Prochownik EV, et al. (2014). Discovery of Methyl 40-
Methyl-5-(7-nitrobenzo[c][1,2,5]oxadiazol-4-yl)-[1,10-biphenyl]-3-carboxylate, an Improved Small-Mole-
cule Inhibitor of c-Myc–Max Dimerization. ChemMedChem, doi: 10.1002/cmdc.201402189

34. Bliss CI (1939) The toxicity of poisons applied jointly. Ann Appl Biol 26: 585–615.

35. Muller I, Larsson K, Frenzel A, Oliynyk G, Zirath H, Prochownik EV, et al. (2014) Targeting of the MycN
protein with small molecule c-Myc inhibitors. PLoS. 9: 1–12.

36. Delmore JE, Issa GC, Lemieux ME, Rahl PB, Shi J, Jacobs HM, et al. (2011) BET bromodomain inhibi-
tion as a therapeutic strategy to target c-Myc. Cell 146: 904–917. doi: 10.1016/j.cell.2011.08.017
PMID: 21889194

37. Zirath H, Frenzl A, Oliynyk G, Segerstrom L, Westermark UK, Larsson K, et al. (2013) MYC inhibition in-
duces metabolic changes leading to accumulation of lipid droplets in tumor cells. Proc. Natl. Acad. Sci.
110: 10258–10263. doi: 10.1073/pnas.1222404110 PMID: 23733953

Dimeric Inhibitors of Myc

PLOS ONE | DOI:10.1371/journal.pone.0121793 April 15, 2015 17 / 17

http://www.ncbi.nlm.nih.gov/pubmed/9927431
http://www.ncbi.nlm.nih.gov/pubmed/10706881
http://www.ncbi.nlm.nih.gov/pubmed/12098700
http://www.ncbi.nlm.nih.gov/pubmed/15475948
http://dx.doi.org/10.1038/nature07260
http://www.ncbi.nlm.nih.gov/pubmed/18716624
http://dx.doi.org/10.1038/nature10509
http://www.ncbi.nlm.nih.gov/pubmed/21964340
http://dx.doi.org/10.1073/pnas.1108190108
http://dx.doi.org/10.1073/pnas.1108190108
http://www.ncbi.nlm.nih.gov/pubmed/21949397
http://dx.doi.org/10.1016/j.bbagrm.2014.03.005
http://dx.doi.org/10.1073/pnas.1319488111
http://www.ncbi.nlm.nih.gov/pubmed/25114221
http://www.ncbi.nlm.nih.gov/pubmed/13679853
http://dx.doi.org/10.1016/j.chembiol.2008.09.011
http://www.ncbi.nlm.nih.gov/pubmed/19022175
http://www.ncbi.nlm.nih.gov/pubmed/17876039
http://www.ncbi.nlm.nih.gov/pubmed/23801058
http://dx.doi.org/10.1016/j.bmcl.2012.10.013
http://www.ncbi.nlm.nih.gov/pubmed/23177256
http://dx.doi.org/10.1002/cmdc.201402189
http://dx.doi.org/10.1016/j.cell.2011.08.017
http://www.ncbi.nlm.nih.gov/pubmed/21889194
http://dx.doi.org/10.1073/pnas.1222404110
http://www.ncbi.nlm.nih.gov/pubmed/23733953

	Reversible linkage of two distinct small molecule inhibitors of myc generates a dimeric inhibitor with improved potency that is active in myc over-expressing cancer cell lines
	Recommended Citation
	Authors

	Reversible Linkage of Two Distinct Small Molecule Inhibitors of Myc Generates a Dimeric Inhibitor with Improved Potency That Is Active in Myc Over-Expressing Cancer Cell Lines

