2 research outputs found

    Three-level Local Thresholding Berbasis Metode Otsu Untuk Segmentasi Leukosit Pada Citra Leukemia Limfoblastik Akut

    Get PDF
    . Segmentation of Acute Lymphoblastic Leukemia (ALL) images can be used to identify the presence of ALL disease. In this paper, three-level local thresholdings based on Otsu method is presented for leucocytes segmentation in ALL image. Firstly, a method based on Gram-Schmidt orthogonalization theory is applied to partition the input image into several sub-images. The proposed method extends Otsu’s bi-level thresholding to three-level thresholding method to find two local threshold values that maximize between-class variance. Using the two local threshold values and three-level local thresholding technique then segmenting each of sub-images into three regions, e.g. nucleus, cytoplasm, and background. To evaluate the performance of the proposed method, 32 peripheral blood smear images are used. The performance of the proposed method is compared with manually segmented ground truth using Zijdenbos similarity index (ZSI), precision, and recall. An experimental evaluation demonstrates superior performance over three-level global thresholding for ALL image segmentation

    Identifikasi Sel Darah Merah Bertumpuk Menggunakan Pohon Keputusan Fuzzy Berbasis Gini Index

    No full text
    Pendekatan teknik data mining diusulkan untuk identifikasi sel darahmerah bertumpuk pada citra makroskopik sel darah untuk meningkatkan akurasipenghitungan jumlah sel darah merah. Fitur yang digunakan adalah geometri danwarna. Fitur geometri terdiri dari luasan dan eksentrisitas sel. Pada prosesidentifikasi digunakan pendekatan fuzzy. Setiap fitur direpresentasikan denganfungsi keanggotaan fuzzy. Identifikasi dilakukan berdasarkan aturan yangdiperoleh dari pohon keputusan fuzzy yang dibangkitkan. Pencabangan multisplitdigunakan pada pohon keputusan fuzzy. Pengukuran split atribut menggunakannilai gini index. Hasil pengujian pada 10 citra makroskopik sel darah yangmengandung 532 sel darah merah menunjukkan bahwa metode yang diusulkanmemiliki rata-rata akurasi sebesar 96,14%. Dengan akurasi yang tinggidiharapkan dapat meningkatkan akurasi diagnosis penyakit berdasarkan jumlahsel darah merah
    corecore