28 research outputs found

    The Specific Molecular Changes Induced by Diabetic Conditions in Valvular Endothelial Cells and upon Their Interactions with Monocytes Contribute to Endothelial Dysfunction

    No full text
    Aortic valve disease (AVD) represents a global public health challenge. Research indicates a higher prevalence of diabetes in AVD patients, accelerating disease advancement. Although the specific mechanisms linking diabetes to valve dysfunction remain unclear, alterations of valvular endothelial cells (VECs) homeostasis due to high glucose (HG) or their crosstalk with monocytes play pivotal roles. The aim of this study was to determine the molecular signatures of VECs in HG and upon their interaction with monocytes in normal (NG) or high glucose conditions and to propose novel mechanisms underlying valvular dysfunction in diabetes. VECs and THP-1 monocytes cultured in NG/HG conditions were used. The RNAseq analysis revealed transcriptomic changes in VECs, in processes related to cytoskeleton regulation, focal adhesions, cellular junctions, and cell adhesion. Key molecules were validated by qPCR, Western blot, and immunofluorescence assays. The alterations in cytoskeleton and intercellular junctions impacted VEC function, leading to changes in VECs adherence to extracellular matrix, endothelial permeability, monocyte adhesion, and transmigration. The findings uncover new molecular mechanisms of VEC dysfunction in HG conditions and upon their interaction with monocytes in NG/HG conditions and may help to understand mechanisms of valvular dysfunction in diabetes and to develop novel therapeutic strategies in AVD

    P-Selectin Targeted Dexamethasone-Loaded Lipid Nanoemulsions: A Novel Therapy to Reduce Vascular Inflammation

    No full text
    Inflammation is a common process associated with numerous vascular pathologies. We hypothesized that targeting the inflamed endothelium by coupling a peptide with high affinity for P-selectin to the surface of dexamethasone-loaded lipid nanoemulsions will highly increase their specific binding to activated endothelial cells (EC) and reduce the cell activation. We developed and characterized dexamethasone-loaded lipid nanoemulsions directed towards P-selectin (PLN-Dex) and monitored their anti-inflammatory effects in vitro using cultured EC (EA.hy926 cells) and in vivo using a mouse model of acute inflammation [lipopolysaccharides (LPS) intravenously administered in C57BL/6 mice]. We found that PLN-Dex bound specifically to the surface of activated EC are efficiently internalized by EC and reduced the expression of proinflammatory genes, thus preventing the monocyte adhesion and transmigration to/through activated EC. Given intravenously in mice with acute inflammation, PLN-Dex accumulated at a significant high level in the lungs (compared to nontargeted nanoemulsions) and significantly reduced mRNA expression level of key proinflammatory cytokines such as IL-1β, IL-6, and MCP-1. In conclusion, the newly developed nanoformulation, PLN-Dex, is functional in vitro and in vivo, reducing selectively the endothelium activation and the consequent monocyte infiltration and diminishing significantly the lungs’ inflammation, in a mouse model of acute inflammation

    Cross talk between smooth muscle cells and monocytes/activated monocytes via CX3CL1/CX3CR1 axis augments expression of pro-atherogenic molecules

    Get PDF
    AbstractObjectiveIn atherosclerotic lesions, fractalkine (CX3CL1) and its receptor (CX3CR1) expressed by smooth muscle cells (SMC) and monocytes/macrophages, mediate the heterotypic anchorage and chemotaxis of these cells. We questioned whether, during the close interaction of monocytes with SMC, the CX3CL1/CX3CR1 pair modulates the expression of pro-atherogenic molecules in these cells.Methods and resultsSMC were co-cultured with monocytes or LPS-activated monocytes (18h) and then the cells were separated and individually investigated for the gene and protein expression of TNFα, IL-1β, IL-6, CX3CR1 and metalloproteinases (MMP-2, MMP-9). We found that SMC–monocyte interaction induced, in each cell type, an increased mRNA and protein expression of TNFα, IL-1β, IL-6, CX3CR1, MMP-2 and MMP-9. Blocking the binding of fractalkine to CX3CR1 (by pre-incubation of monocytes with anti-CX3CR1 or by CX3CR1 siRNA transfection) before cell co-culture decreased the production of TNFα, CX3CR1 and MMP-9. Monocyte–SMC interaction induced the phosphorylation of p38MAPK and activation of AP-1 transcription factor. Silencing the p65 (NF-kB subunit) inhibited the IL-1β and IL-6 and silencing c-jun inhibited the TNFα, CX3CR1 and MMP-9 induced by SMC–monocyte interaction.ConclusionsThe cross-talk between SMC and monocytes augments the inflammatory response in both cell types as revealed by the increased expression of TNFα, IL-1β, IL-6, CX3CR1 and MMPs. Up-regulation of TNFα, CX3CR1 and MMP-9 is further increased upon interaction of SMC with activated monocytes and is dependent on fractalkine/CXRCR1 pair. These data imply that the fractalkine/CX3RCR1 axis may represent a therapeutic target to impede the inflammatory process associated with atherosclerosis

    Chronic High Glucose Concentration Induces Inflammatory and Remodeling Changes in Valvular Endothelial Cells and Valvular Interstitial Cells in a Gelatin Methacrylate 3D Model of the Human Aortic Valve

    No full text
    Calcific aortic valve disease (CAVD), a degenerative disease characterized by inflammation, fibrosis and calcification, is accelerated in diabetes. Hyperglycemia contributes to this process by mechanisms that still need to be uncovered. We have recently developed a 3D model of the human aortic valve based on gelatin methacrylate and revealed that high glucose (HG) induced osteogenic molecules and increased calcium deposits in a pro-osteogenic environment. To further understand the events leading to calcification in diabetic conditions in CAVD, we analyzed here the inflammatory and remodeling mechanisms induced by HG in our 3D model. We exposed valvular endothelial cells (VEC) and interstitial cells (VIC) to normal glucose (NG) or HG for 7 and 14 days, then we isolated and separated the cells by anti-CD31 immunomagnetic beads. The changes induced by HG in the 3D model were investigated by real-time polymerase chain reaction (RT-PCR), Western blot, enzyme-linked immunosorbent assay (ELISA) and immunofluorescence. Our results showed that HG induced expression of different cytokines, cell adhesion molecules and matrix metalloproteinases in VEC and VIC. In addition, protein kinase C was increased in VEC and VIC, indicating molecular mechanisms associated with HG induced inflammation and remodeling in both valvular cells. These findings may indicate new biomarkers and targets for therapy in diabetes associated with CAVD

    VCAM-1 Targeted Lipopolyplexes as Vehicles for Efficient Delivery of shRNA-Runx2 to Osteoblast-Differentiated Valvular Interstitial Cells; Implications in Calcific Valve Disease Treatment

    No full text
    Calcific aortic valve disease (CAVD) is a progressive inflammatory disorder characterized by extracellular matrix remodeling and valvular interstitial cells (VIC) osteodifferentiation leading to valve leaflets calcification and impairment movement. Runx2, the master transcription factor involved in VIC osteodifferentiation, modulates the expression of other osteogenic molecules. Previously, we have demonstrated that the osteoblastic phenotypic shift of cultured VIC is impeded by Runx2 silencing using fullerene (C60)-polyethyleneimine (PEI)/short hairpin (sh)RNA-Runx2 (shRunx2) polyplexes. Since the use of polyplexes for in vivo delivery is limited by their instability in the plasma and the non-specific tissue interactions, we designed and obtained targeted, lipid-enveloped polyplexes (lipopolyplexes) suitable for (1) systemic administration and (2) targeted delivery of shRunx2 to osteoblast-differentiated VIC (oVIC). Vascular cell adhesion molecule (VCAM)-1 expressed on the surface of oVIC was used as a target, and a peptide with high affinity for VCAM-1 was coupled to the surface of lipopolyplexes encapsulating C60-PEI/shRunx2 (V-LPP/shRunx2). We report here that V-LPP/shRunx2 lipopolyplexes are cyto- and hemo-compatible and specifically taken up by oVIC. These lipopolyplexes are functional as they downregulate the Runx2 gene and protein expression, and their uptake leads to a significant decrease in the expression of osteogenic molecules (OSP, BSP, BMP-2). These results identify V-LPP/shRunx2 as a new, appropriately directed vehicle that could be instrumental in developing novel strategies for blocking the progression of CAVD using a targeted nanomedicine approach

    Targeted Transfection Using PEGylated Cationic Liposomes Directed Towards P-Selectin Increases siRNA Delivery into Activated Endothelial Cells

    Get PDF
    : The progress in small-interfering RNA (siRNA) therapeutics depends on the development of suitable nanocarriers to perform specific and effective delivery to dysfunctional cells. In this paper, we questioned whether P-selectin, a cell adhesion molecule specifically expressed on the surface of activated endothelial cells (EC) could be employed as a target for nanotherapeutic intervention. To this purpose, we developed and characterized P-selectin targeted PEGylated cationic liposomes able to efficiently pack siRNA and to function as efficient vectors for siRNA delivery to tumour necrosis factor-α (TNF-α) activated EC. Targeted cationic liposomes were obtained by coupling a peptide with high affinity for P-selectin to a functionalized PEGylated phospholipid inserted in the liposomes’ bilayer (Psel-lipo). As control, scrambled peptide coupled cationic liposomes (Scr-lipo) were used. The lipoplexes obtained by complexation of Psel-lipo with siRNA (Psel-lipo/siRNA) were taken up specifically and at a higher extent by TNF-α activated b.End3 endothelial cells as compared to non-targeted Scr-lipo/siRNA. The Psel-lipo/siRNA delivered with high efficiency siRNA into the cells. The lipoplexes were functional as demonstrated by the down-regulation of the selected gene (GAPDH). The results demonstrate an effective targeted delivery of siRNA into cultured activated endothelial cells using P-selectin directed PEGylated cationic liposomes, which subsequently knock-down the desired gene

    Antitumor Properties of a New Macrocyclic Tetranuclear Oxidovanadium(V) Complex with 3-Methoxysalicylidenvaline Ligand

    No full text
    A wide variety of metal-based compounds have been obtained and studied for their antitumor activity since the intensely used cytostatic drugs (e.g., cisplatin) failed to accomplish their expected pharmacological properties. Thus, we aimed to develop a new vanadium-based drug and assess its antitumor properties using the human hepatocarcinoma (HepG2) cell line. The compound was synthesized from vanadyl sulfate, DL-valine, and o-vanillin and was spectrally and structurally characterized (UV-Vis, IR, CD, and single-crystal/powder-XRD). Compound stability in biological media, cell uptake, and the interaction with albumin were assessed. The mechanisms of its antitumor activity were determined compared to cisplatin by performing cytotoxicity, oxidative and mitochondrial status, DNA fragmentation, β-Tubulin synthesis investigation, and cell cycle studies. Herein, we developed a macrocyclic tetranuclear oxidovanadium(V) compound, [(VVO)(L)(CH3O)]4, having coordinated four Schiff base (H2L) ligands, 3-methoxysalicylidenvaline. We showed that [(VVO)(L)(CH3O)]4: (i) has pH-dependent stability in biological media, (ii) binds to albumin in a dose-dependent manner, (iii) is taken up by cells in a time-dependent way, (iv) has a higher capacity to induce cell death compared to cisplatin (IC50 = 6 μM vs. 10 μM), by altering the oxidative and mitochondrial status in HepG2 cells. Unlike cisplatin, which blocks the cell cycle in the S-phase, the new vanadium-based compound arrests it in S and G2/M-phase, whereas no differences in the induction of DNA fragmentation and reduction of β-Tubulin synthesis between the two were determined. Thus, the [(VVO)(L)(CH3O)]4 antitumor mechanism involved corroboration between the generation of oxidative species, mitochondrial dysfunction, degradation of DNA, cell cycle arrest in the S and G2/M-phase, and β-Tubulin synthesis reduction. Our studies demonstrate the potent antitumor activity of [(VVO)(L)(CH3O)]4 and propose it as an attractive candidate for anticancer therapy

    Integrins α4β1 and αVβ3 are Reduced in Endothelial Progenitor Cells from Diabetic Dyslipidemic Mice and May Represent New Targets for Therapy in Aortic Valve Disease

    No full text
    Diabetes reduces the number and induces dysfunction in circulating endothelial progenitor cells (EPCs) by mechanisms that are still uncovered. This study aims to evaluate the number, viability, phenotype, and function of EPCs in dyslipidemic mice with early diabetes mellitus and EPC infiltration in the aortic valve in order to identify possible therapeutic targets in diabetes-associated cardiovascular disease. A streptozotocin-induced diabetic apolipoprotein E knock-out (ApoE−/−) mouse model was used to identify the early and progressive changes, at 4 or 7 days on atherogenic diet after the last streptozotocin or citrate buffer injection. Blood and aortic valves from diabetic or nondiabetic ApoE−/− animals were collected.EPCs were identified as CD34 and vascular endothelial growth factor receptor 2 positive monocytes, and the expression levels of α4β1, αVβ3, αVβ5, β1, αLβ2, α5 integrins, and C-X-C chemokine receptor type 4 chemokine receptor on EPC surface were assessed by flow cytometry. The number of CD34 positive cells in the aortic valve, previously found to be recruited progenitor cells, was measured by fluorescence microscopy. Our results show that aortic valves from mice fed 7 days with atherogenic diet presented a significantly higher number of CD34 positive cells compared with mice fed only 4 days with the same diet, and diabetes reversed this finding. We also show a reduction of circulatory EPC numbers in diabetic mice caused by cell senescence and lower mobilization. Dyslipidemia induced EPC death through apoptosis regardless of the presence of diabetes, as shown by the higher percent of propidium iodide positive cells and higher cleaved caspase-3 levels. EPCs from diabetic mice expressed α4β1 and αVβ3 integrins at a lower level, while the rest of the integrins tested were unaffected by diabetes or diet. In conclusion, reduced EPC number and expression of α4β1 and αVβ3 integrins on EPCs at 4 and 7 days after diabetes induction in atherosclerosis-prone mice have resulted in lower recruitment of EPCs in the aortic valve
    corecore