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Objective: In atherosclerotic lesions, fractalkine (CX3CL1) and its receptor (CX3CR1) expressed by smooth
muscle cells (SMC) and monocytes/macrophages, mediate the heterotypic anchorage and chemotaxis of
these cells. We questioned whether, during the close interaction of monocytes with SMC, the CX3CL1/
CX3CR1 pair modulates the expression of pro-atherogenic molecules in these cells.
Methods and results: SMC were co-cultured with monocytes or LPS-activated monocytes (18 h) and then the
cells were separated and individually investigated for the gene and protein expression of TNFα, IL-1β, IL-6,
CX3CR1 and metalloproteinases (MMP-2, MMP-9). We found that SMC–monocyte interaction induced, in each
cell type, an increasedmRNA and protein expression of TNFα, IL-1β, IL-6, CX3CR1, MMP-2 andMMP-9. Blocking
the binding of fractalkine to CX3CR1 (by pre-incubation of monocytes with anti-CX3CR1 or by CX3CR1 siRNA
transfection) before cell co-culture decreased the production of TNFα, CX3CR1 and MMP-9. Monocyte–SMC in-
teraction induced the phosphorylation of p38MAPK and activation of AP-1 transcription factor. Silencing the p65
(NF-kB subunit) inhibited the IL-1β and IL-6 and silencing c-jun inhibited the TNFα, CX3CR1 andMMP-9 induced

by SMC–monocyte interaction.
Conclusions: The cross-talk between SMC andmonocytes augments the inflammatory response in both cell types as
revealed by the increased expression of TNFα, IL-1β, IL-6, CX3CR1 andMMPs. Up-regulation of TNFα, CX3CR1 and
MMP-9 is further increased upon interaction of SMC with activated monocytes and is dependent on fractalkine/
CXRCR1 pair. These data imply that the fractalkine/CX3RCR1 axis may represent a therapeutic target to impede
the inflammatory process associated with atherosclerosis.

© 2011 Elsevier B.V. All rights reserved.
1. Introduction

Atherosclerosis, entails in addition to dyslipidemia a complex in-
flammatory process whose progression is dependent upon an intricate
network of cells, cytokine and chemokine signaling [1–3]. Inflammatory
cytokines are producedmainly bymonocyte/macrophages and lympho-
cytes, but also by endothelial cells and smooth muscle cells (SMC) after
stimulation by inflammatory mediators or toxins [4]. Several cytokines
such as TNFα, IL-6 and IL-1β may predict the risk of cardiovascular
events [5].
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TNFα exerts potent pro-inflammatory effects in atherosclerosis and
other metabolic and inflammatory disorders. It is present in human and
animal atherosclerotic plaques. In TNFα-deficient apoE−/− mice, the
atherosclerotic lesion size in the aortic sinus was significantly smaller
than in apoE−/−mice, and this was associatedwith a decreased expres-
sion of ICAM-1, VCAM-1, and MCP-1 [6]. Like TNFα, IL-1β is one of the
main pro-inflammatory products of monocytes/macrophages generated
in pathologic conditions. Blocking IL-1β in ApoE−/− mice impedes the
development of atherosclerosis revealing its role in the plaque formation
[7]. IL-6, a significant cytokine, is implicated in the pathology of numerous
diseases, including atherosclerosis [8]. IL-6 treatment at supra-
physiological concentrations of C57Bl/6 mice and apoE−/− mice (on
low-, or high-fat diet) resulted in a fivefold and twofold increase, respec-
tively, in fatty streak size [9].

Vascular cells and monocyte/macrophages secrete matrix metallo-
proteinases (MMPs). MMP-2 that is constitutively expressed in normal
artery SMC, is increased in atherosclerosis concomitantly with the en-
hanced expression of MMP-9 both in SMC and macrophages [10]. The
MMP-9 activity causes the degradation of SMC's basal lamina facilitating
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their migration to the intima and therefore may be involved in fibrous
cap formation; excessive proteolytic activity of MMPs renders the pla-
que vulnerable and prone to destabilization and rupture [11].

Recent studies indicate that within the plaque, the interaction be-
tween SMC and monocytes has a role in the promotion of monocyte
retention, foam-cell formation, and in atherogenesis [12]. Moreover,
the SMC–monocyte interactions increase the production of
atherosclerosis-related factors such as metalloproteinase-1 within
both cell types [13] but the pathophysiological consequences of
their interaction are scantily characterized. Fractalkine (CX3CL1) is
an atypical chemokine that functions as chemoattractant or as adhe-
sion molecule, facilitating monocyte and T cell transmigration in ath-
erosclerotic lesion prone areas [14]. The presence of fractalkine and
its cognate receptor was demonstrated in human coronary artery ath-
erosclerotic plaque but not in normal artery [15]. Previous reports
have shown that within the atherosclerotic plaque SMC and mono-
cytes interact via the CX3CL1/CX3CR1 axis and that their interaction
regulates monocyte survival and differentiation [15–17]. The fractalk-
ine/CX3CR1 axis has been implicated in the pathogenesis of vascular
dysfunction and vascular disease. Thus, interrupting the CX3CL1–
CX3CR1 binding in vivo has a highly protective effect in animal
models of atherosclerosis [18] and that human subjects heterozygous
for the CX3CR1-M280 allele, which encodes a defective receptor, have
a reduced risk of atherosclerotic cardiovascular disease [19]. Based on
these data, we hypothesized that, the interaction between SMC and
monocytes via CX3CL1/CX3CR1 axis may have an effect on each cell
type and trigger the induction of pro-inflammatory molecules that
are important for plaque progression. We report here that direct con-
tact between SMC and monocytes or SMC and lipopolysaccharide
(LPS)-activated monocytes increases the expression of TNFα, IL-1β,
IL-6, CX3CR1 and MMPs, and that CX3CL1–CX3CR1 binding is in-
volved in the up-regulation of TNFα, CX3CR1 and MMP-9 expression,
essential molecules known to affect the progression of atherosclero-
sis. Activation of monocytes with LPS before co-culture with SMC pro-
duces a further increase of TNFα, CX3CR1 and MMP-9.

2. Materials and methods

2.1. Materials

Monoclonal antibodies, rabbit anti-human CX3CR1, antiphospho-
and total p38MAPK, and anti-human to pc-jun were from Santa Cruz
Biotechnology. The FITC labeled anti-human CX3CR1 was from MBL
(Biozol, Germany). The monoclonal antibody to fractalkine was from
R&D Systems, and anti-actin, the secondary antibodies and all the
other reagents were from Sigma Aldrich Chemie GmbH (Germany).
Signal West Pico Chemiluminescent Substrate kit was from Pierce
(Rockford USA). Rabbit and mouse IgG used for flow cytometry and
neutralization studies were from Sigma and BD Biosciences. siRNAs
(p65/c-Jun/CX3CR1/scrambled) and siRNA transfection reagent
Superfect were obtained from Santa Cruz Biotechnology. siRNA trans-
fection reagent turbofect was from Fermentas.

CD14 MicroBeads were from Miltenyi Biotech. Human TNFα and
IL6 enzyme-linked immunosorbent assays were from R&D Systems.
RT-PCR reagents and Alexa Fluor594 were from Invitrogen.

2.2. Cell culture

Human aortic SMC were isolated from the media of fetal thoracic
aorta and characterized as a pure cell line devoid of any contami-
nants. The cells exhibited an elongated spindle-shaped morphology,
grow as multilayers with the characteristic hills and valley pattern
(as assessed by phase-contrast microscopy), and exhibited bundles
of cytoplasmic myofilaments and numerous caveolae at the cell pe-
riphery (as demonstrated by electron microscopy). In addition immu-
noblotting and immunohistochemistry experiments revealed that
they are positive for smooth muscle alpha-actin, and for vinculin,
negative for von Willebrand factor [22], and display functional
store-operated channels responsive for capacitative calcium entry
[23,24]. SMC were cultured in DMEM as described [20].

Monocyte-like cell line U937 (a kind gift of Professor S.C. Silverstein,
Columbia University, New York, USA) were grown in suspension in the
RPMI 1640 culture medium containing 5% FCS and were split 1:5, twice
a week.

This investigation was carried out according to the principles out-
lined in the Declaration of Helsinki [21]. The Ethics Committee of
the Institute of Cellular Biology and Pathology “Nicolae Simionescu”,
Bucharest, approved the protocol.

2.3. Experimental design: incubation of monocytes with SMC followed by
cell separation

Monocytes or LPS-activated monocytes in suspension (106) were
added to confluent cultured SMC and incubated (37 °C, 5%CO2) in
RPMI1640medium for 18 h. The latter timewas chosen based on our pre-
liminary data showing that incubation of SMC ormonocytes with soluble
fractalkine for 18 h was sufficient to induce a statistically significant up-
regulation of IL6, VCAM-1 and TNFα expression (Supplementary Fig. 1C,
D, E). After 18 h, the non-adherent monocytes were removed and the
co-culture represented by the adhered monocytes to SMCwas incubated
with accutase for 10 min. From the resulting cell suspension, a pure SMC
or monocyte population was separated by positive selection of mono-
cytes, using CD14MicroBeads and amagnetic cell sorting (MACS) separa-
tor (Miltenyi Biotech) according to the manufacturer's instructions. The
adherent monocytes represented ~20% of the total number of monocytes
added to SMC (as quantified from the extracted mRNA). Before starting
the cell separation experiments, we checked for the CD14 surface expres-
sion of both SMC and monocytes and found that only the latter were
CD14 positive (Supplementary Fig. 1A, B). Monocyte purity in each cell
preparation was evaluated by flow cytometry using MoFlo MLS flow cyt-
ometer (Dako-Cytomation, Fort Collins, CO). Since the RMPI-1640 medi-
um used contains 11 mM glucose that can be considered as a
‘hyperglycemia-like’ environment, we performed control experiments
withmonocytes cultured in RPMIwithout glucose and in the culture me-
dium containing 5.5 and 11 mM glucose concentrations. The results
showed that TNFα, MMP-9 and CX3CR1 gene expressions were
not affected by these glucose concentrations (Supplementary Fig. 1F).

To increase the expression of fractalkine on SMC surface, in
some experiments, before cell interaction, SMC were activated (4 h)
with TNFα (10 ng/ml). For blocking studies, monocytes were pre-
incubated with human monoclonal anti-CX3CR1 or anti-CCR2 (5 μg/
ml) for 30 min (37 °C) and then were interacted with SMC (as above).
As negative control, a non-specific immunoglobulin (IgG, BD Biosci-
ence) was used instead of anti-CX3CR1.

2.4. Flow cytometry

Monocytes or accutase-harvested SMCwere fixed with ice-cold 3%
paraformaldehyde, washed twice with ice-cold phosphate buffered
saline and labeled with anti-human CX3CR1 IgG (2 μg/ml) followed
by FITC-conjugated anti-rabbit IgG (1/100). The mean CX3CR1-
specific fluorescence was corrected for the background as determined
with nonspecific rabbit IgG isotypes. For surface expression of CD14,
the cells were incubated with a saturated concentration of FITC-
conjugated anti-CD14 (30 min, 4 °C). Flow cytometry was performed
using a MoFlo MLS flow cytometer.

2.5. Reverse transcriptase-polymerase chain reaction (RT-PCR)

Gene analysis was performed as described [20] (Supplementary
material). The mRNA levels of analyzed molecules were normalized
relative to GAPDH mRNA levels.
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2.6. Western blot

Protein analysis was performed as described [20]. The signals were
visualized using SuperSignal West Pico chemiluminescent substrate
(Pierce) and quantified by densitometry employing gel analyzer system
Luminiscent image analyzer LAS 4000 (Fujifilm) and Image reader LAS
4000 software.

2.7. Transfection of small interfering RNA (siRNA)

The siRNA (p65/c-Jun/scrambled) was transfected into SMC using
siRNA transfection reagent Superfect and siRNA (CX3CR1/scrambled)
into monocytes using turbofect, according to the manufacturer's pro-
tocol. Twenty-four hours after transfection, the cells were harvested
and analyzed. Transfection efficiency was evaluated by detection of
p65 and c-Jun protein expression using Western blot assay. After
transfection, the interaction between SMC and monocytes, followed
by cell separation, was performed as described.

2.8. Gelatin zymography assay

Conditioned medium collected from cultured monocytes, SMC or
from interacted monocyte–SMC was electrophoresed under non-
reducing conditions on 10% polyacrylamide gels containing 1 mg/ml
gelatin as substrate. After electrophoresis, the gels were renatured
in 2.5% Triton X-100 (2×30 min) and then incubated (18 h, 37 °C)
in 50 mM Tris–HCl, pH 7.4, containing 10 mM CaCl2 and 0.2 mM
PMSF; subsequently the gels were stained with 0.2% Coomassie bril-
liant blue R-250 and de-stained with 10% acetic acid and 25% metha-
nol. The white bands against the blue background indicated the
presence of gelatinolytic activity. Image acquisition was done with
Image Master VDS and LisCap software (Amersham Pharmacia Bio-
tech). Computerized densitometry was employed to evaluate the rel-
ative enzymatic activity (TotalLab software — Amersham Pharmacia
Biotech, Wien).

2.9. TNFα and IL6 quantification

TNFα and IL-6 antigen were quantified in the cell-conditioned
media using an ELISA assay (R&D systems, UK) according to the
manufacturer's instructions. The detection limit was 5 pg/ml.
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2.10. Real time PCR

Quantification of TNF-α, MMP-9 and CX3CR1 mRNA expression
was done by amplification of cDNA using SYBR Green I chemistry
(Supplementary material). The relative quantification was performed
by comparative CT method and expressed as arbitrary units [25].

2.11. Statistical analysis

The data obtained from the experiments were expressed as the
means±standard deviation (SE). Statistical evaluation was carried
out by one-way ANOVA test. The p value for multiple comparisons
was calculated using one-way ANOVA and Bonferroni test from
OriginPro7.5 software. pb0.05 was considered statistically significant.

3. Results

3.1. The interaction between SMC and monocytes increases the TNFα
gene expression and TNFα protein release in the conditioned media

The expression of TNFα in SMC and monocytes was assessed before
and after cell–cell interaction followed by individual cell separation (as
described in the experimental design).We found that prior to their con-
tact, monocytes and especially SMC express a low level of TNFαmRNA.
Conversely, upon monocyte–SMC interaction, the TNFα gene expres-
sion increased significantly in both cell types (Fig. 1A).

To track the role of CX3CL1–CX3CR1 axis in the increased TNFα pro-
duction uponmonocyte–SMC interaction, before co-culture,monocytes
were pre-incubated for 30 min with anti-CX3CR1 to block the cell-to-
cell interaction via CX3CL1–CX3CR1 binding. These experiments
showed that the TNFα expression was significantly reduced in both,
monocytes and SMC (Fig. 1A) demonstrating the dependence of TNFα
expression on CX3CL1–CX3CR1 interaction. The control experiments
revealed that: i) pre-incubation ofmonocyteswith a nonspecific immu-
noglobulin (IgG) or anti-CCR2 (MCP-1 receptor) followedby interaction
with SMC, did not change the TNFα expression (Supplementary
Fig. 2A); ii) the TNFα expression was not changed by incubation of
monocytes (without co-culture) with anti-CX3CR1 (Supplementary
Fig. 2D); iii) after 18 h in co-culture no change in the proliferation of
SMC or monocytes was detected by PCNA Western blot experiments,
(Supplementary Fig. 2E). These experiments indicated that the increase
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in the expression of TNFα in SMC and monocytes was dependent on
cell–cell interaction, and was not due to a raise in cell proliferation.

To find out if the SMC pre-stimulation produces a greater effect, the
cells were exposed to TNFα (that increases the CX3CL1 expression)
prior to the interaction with monocytes. The experiments showed
that the interaction of TNFα-stimulated SMCwithmonocytes increased
the TNFα expression in monocytes and SMC to a level comparable to
that obtained for non-stimulated SMC (Fig. 1A).

Blocking of CX3CR1 onmonocytes by incubationwith anti-CX3CR1
before interaction with TNFα-activated SMC reduced the TNFαmRNA
expression to the control level, in both cell types (Fig. 1A).

To assess if monocyte–SMC interaction induces the release of
TNFα protein, we determined the presence of TNFα in the culture
medium using an ELISA assay. As shown in Fig. 1B, TNFα released in
the conditioned media upon SMC–monocyte interaction (lane SM)
increased significantly compared to TNFα values in the culture
media of control SMC (S) or monocytes (M). Pre-incubation of mono-
cytes with anti-CX3CR1 before the interaction with SMC, reduced the
released TNFα to control level (Fig. 1B, SMR) demonstrating that this
effect was dependent on CX3CL1–CX3CR1 binding.

Pre-stimulation of SMC with TNFα followed by the cell interaction
induced a significant release of TNFα in the culture medium as com-
pared to unstimulated SMC (Fig. 1B, lane STM). Blocking the CX3CR1
before cell interaction significantly reduced the TNFα concentration
in the conditioned medium (Fig. 1B, lane STMR). Interestingly,
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that TNFα produced during SMC–monocyte interaction is dependent
on CX3CL1–CX3CR1 axis.

3.2. SMC–monocyte interaction modulates IL-1β and IL-6 mRNA and
protein expression independent of CX3CL1–CX3CR1 axis

In culture,monocytes and aortic SMC displayed a baseline expression
of IL-1β mRNA; however, upon their interaction, IL-1β mRNA and pro-
tein expression increased significantly in both cell types (Fig. 2A and B).

In contrast to IL-1β, cultured monocytes did not express detect-
able level of IL-6 mRNA. Moreover, monocyte–SMC interaction did
not affect IL-6 expression in monocytes (data not shown) but in-
creased significantly the IL-6 mRNA in SMC (Fig. 2C) and IL-6 protein
released in the culture medium (Fig. 2D, lane SM). Blocking of
CX3CL1–CX3CR1 binding by pre-incubation of monocytes with anti-
CX3CR1 did not affect IL-6 or IL-1β expression induced by cell–cell in-
teraction. In TNFα-activated SMC, the release of IL-6 was comparable
to the control SMC (Fig. 2D, ST and S). These results demonstrated
that although SMC–monocyte interaction increased IL6 and IL-1β ex-
pression, the CX3CL1–CX3CR1 axis is not involved in their induction.
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3.3. SMC–monocyte interaction increases the MMP-2 and MMP-9 ex-
pression; MMP-9 induction is a function of CX3CL–CX3CR1 pair

Cultured SMC expressed low level of MMP-2 mRNA and no MMP-9
mRNA, whereasmonocytes expressed low levels of bothMMPs (Fig. 3A
and B). Upon SMC–monocyte interaction, both MMPs increased signifi-
cantly in each cell type. Likewise, MMP-9 protein was not detectable in
the conditioned media of monocytes or SMC (Fig. 3C, lanes S, M)
but increased significantly in the conditioned media collected from
co-cultured cells (Fig. 3C, lane SM). Interestingly, in TNFα-activated
SMC(prior to interactionwithmonocytes) theMMP-9 gene andprotein
expression were considerably increased in both cell types (Fig. 3A) and
in co-culture media (Fig. 3C, lane STM), respectively. Pre-stimulation
with TNFα did not affect theMMP-2 gene expression (Fig. 3B). Blocking
the CX3CR1 on monocytes reduced the MMP-9 gene expression in
monocytes and SMC, and the protein released in the conditioned co-
culture media, whereas no effect was detected in MMP-2 mRNA or
protein expression. Incubation of monocytes with a nonspecific IgG or
anti-CCR2, before cell co-culture, did not affect the MMP-9 expression
induced by cell interaction (Supplementary Fig. 2B). Moreover, adding
the anti-CX3CR1 on monocytes (without cell interaction) did not affect
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theMMP-9 expression (Supplementary Fig. 2D). These results highlight
that the CX3CL1–CX3CR1 axis has a role in the production of MMP-9.

3.4. CX3CR1mRNA and protein expression is increased upon SMC–monocyte
interaction and is dependent on CX3CL1–CX3CR1 pair

Since CX3CL1 induces its own expression and increases monocyte–
SMC adhesion [26] and CX3CR1 is expressed by both monocytes and
SMC [15,27], we questioned whether CX3CL1–CX3CR1 binding also
modulates the expression of CX3CR1. We observed that the interaction
of SMC with monocytes induced a significant up-regulation of CX3CR1
gene and protein expression in each cell type (Fig. 4A and B) compared
to their expression in controls, non-interacted cells. Stimulation of
SMC with TNFα before cell interaction, led to a further increase in
the gene and protein expression of CX3CR1 in SMC (Fig. 4A and B).
Pre-treatment of monocytes with anti-CX3CR1, before cell co-culture
reduced the CX3CR1 expression in both cell types, suggesting that
the CX3CR1 modulation is dependent on CX3CL1–CX3CR1 binding.
Pre-incubation of monocytes with a nonspecific immunoglobulin
(IgG) or anti-CCR2, followed by interaction with SMC, did not affect
the CX3CR1 expression (Supplementary Fig. 2C).
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3.5. The effect of CX3CR1 silencing on TNFα, MMP-9 and CX3CR1 expres-
sion induced by interaction of SMC with LPS-activated monocytes

It is known that after the endothelial transmigration, themonocytes
become activated, up-regulate a broad spectrum of inflammatory mol-
ecules and MMPs [28] and may interact with the intimal cells. In this
context, we analyzed the interaction of activated monocytes with
SMC. Monocytes were activated (6 h) by exposure to 100 ng/ml LPS
(a concentration reported to activate human monocytes and induce
TNFα release [29]) and then the cells were co-cultured with SMC for
18 h. To specifically block the CX3CR1 expression, in some experiments
activated monocytes and SMC were transfected with CX3CR1 siRNA, or
negative control siRNA and next co-cultured. The real time-PCR results
showed that the interaction of SMC with LPS-activated monocytes in-
creased the expression of TNFα, MMP-9 and CX3CR1 in both cell
types (Fig. 5A, B, C), as compared to control cells (without co-culture).
Interestingly co-culture of SMC with activated monocytes induced a
higher expression of TNFα and MMP-9 versus co-culture of SMC with
non-activated monocytes (Supplementary Fig. 3A, B), while the
CX3CR1 expression was not modified (not shown).

CX3CR1 silencing significantly reduce the expression of TNFα, MMP-
9 and CX3CR1 expression in each cell type (Fig. 5A, B, C), confirming the
results obtained by pre-treatment of monocytes with anti-CX3CR1. Cell
transfectionwith negative control siRNAhadnoeffect on the expression
of inflammatory molecules induced by co-culturing LPS-activated
monocyte with SMC.

3.6. Role of NF-kB and AP-1 in the induction of inflammatory molecules
upon SMC–monocyte interaction

We further explored the regulating factor(s) that may be activated
in SMC upon their interaction with monocytes. First, we analyzed if
SMC–monocyte interaction induces the activation of p38MAPK or
ERK. Investigations of p38MAPK phosphorylation (using Western
blot assay) showed that the SMC–monocyte interaction activated
the p38MAPK in each cell type (Fig. 6A). No significant activation of
ERK1/2 was detected (data not shown). Blocking of CX3CR1 on
monocytes before interaction with SMC impaired activation of
p38MAPK in SMC, suggesting that fractalkine–CX3CR1 axis activates
the p38MAPK signaling pathway (Fig. 6A).

Next, we investigated the activation of AP-1 transcription factor
induced by cell–cell interaction and found that the phospho c-jun
was activated in both, SMC and monocytes (Fig. 6B). The c-jun
activation in SMC was dependent on CX3CL1–CX3CR1 pair, since
blocking of CX3CR1 on monocytes impaired its activation.

To test directly whether AP-1 or NF-kB is involved in the up-
regulation of TNFα, IL-6, IL-1β, CX3CR1 and MMP expression in aortic
SMC, the endogenous expression of NF-kB (p65) and AP-1 (c-jun) was
blocked with target-specific siRNA prior to SMC–monocyte interaction.
Transfection of SMC with either oligomer followed by interaction with
monocytes, suppressed accumulation of target mRNA, p65 or c-jun. As
a result, the protein expression of p65 was reduced by 68% and c-jun
subunit was decreased by 45% in cells transfected with p65 siRNA and
c-jun siRNA, respectively (Fig. 6C1 and C2). The expression of p65 and
c-jun in SMC transfected with the negative control oligomers and inter-
acted with monocytes was not changed. After verifying that the trans-
fection experiments blocked the endogenous expression of NF-kB and
AP-1, we tested the TNFα, IL-6 and IL-1β, CX3CR1 and MMP-9 expres-
sion in transfected cells. SMC transfection with negative control siRNA
had no effect on inflammatory molecules, induced by monocyte–SMC
interaction (Fig. 6D, E). In contrast, c-jun knockdown strongly de-
creased the TNFα mRNA (Fig. 6D1), MMP-9 mRNA expression
(Fig. 6E1) and CX3CR1 mRNA (Fig. 6E2) indicating that AP-1 activation
in SMC is involved in the induction of these molecules upon cell–
cell interaction. As shown in Fig. 6D2, D3, silencing of p65 reduced the
gene expression of IL-6 and IL-1β in SMC interacted with monocytes.

4. Discussion and conclusion

Recent data indicate that vascular SMC andmonocytes–macrophages
are not merely innocent coexisting neighbors in the plaque, but their in-
teraction enhances monocyte procoagulant activity and production of
atherosclerosis-related factors such as MMP-1, MCP-1 and IL-6 that ag-
gravate the inflammatory process [13,30]. The adhesive interaction be-
tween monocytes and SMC is enhanced by growth factors through a
process independent of VCAM-1 and ICAM-1 expressed by SMC [26].
Consequently, other adhesionmolecules and chemokinesmay be instru-
mental in the adhesion process. Immunocytochemistry data demon-
strated that within the human plaque, CX3CL1 on SMC co-localizes
with macrophage CX3CR1 [15]. We predicted that the close interaction
between monocytes and the vessels' resident SMC reflects a cross talk
between these cells, which may have repercussion on the plaque evolu-
tion, i.e. increased production of cytokines or MMPs. Thus, we evaluated
the induction of pro-atherogenic molecules in SMC and in monocytes,
consequent to their direct contact, and the role of the CX3CL1–CX3CR1
axis in the process. Our results showed that the interaction between
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monocytes and SMC generated in each cell type the up-regulation of
TNFα, IL-6, IL-1β, CX3CR1, MMP-2 andMMP-9 gene and protein expres-
sion; CX3CL1–CX3CR1 axis triggers the expression of TNFα, MMP-9 and
CX3CR1 whereas IL-6, IL-1β, and MMP-2 expression is independent of
this ligand–receptor pair.

Cytokines, like TNFα and interleukins, are key molecules implicat-
ed in the chronic vascular inflammation associated to atherosclerosis
[31]. Our data show a significant up-regulation of TNFα, IL-1β and
IL-6 gene and protein expression in both monocytes and SMC, after
their interaction. Incubation of monocytes with anti-CX3CR1 prior
to the interaction with SMC impeded significantly the TNFα expres-
sion in both cell types, but not the IL-1β and IL-6 mRNA. Interestingly,
the TNFα expression is further increased when SMC were interacted
with LPS-activated monocytes. This additional increase can be due
to the augmented release of soluble factors and/or a raise in CX3CR1 ex-
pression in activated monocytes. These assumptions are in line with
previous reports that demonstrated that oxidized linoleic acid com-
ponents (at 24 h) induce human monocytes to mature and undergo
a chemokine receptor switch: CCR2 off, CX3CR1 on [27]. Silencing
of CX3CR1 significantly reduced the TNFα expression in both cell
types, indicating that the CX3CL1–CX3CR1 axis is involved in TNFα
induction upon interaction between SMC and monocytes/activated
monocytes.

Since blocking of CX3CL1–CX3CR1 binding did not affect the IL-
6 and IL-1β expression, we presume that other adhesion molecule–
receptor interaction (such as ICAM-1/LFA-1, VCAM-1/VLA-4) which
is involved in monocyte adhesion to SMC [16,32], or soluble factors
(such as TNFα) produced during co-culture may be implicated in
their up-regulation upon cell interaction. Moreover, the non-
adherent monocytes present in the conditioned media of co-culture
may produce soluble factors that can influence the cross talk between
monocytes and SMC. This assumption is supported by a report show-
ing that the increased IL-6 and MCP-1 production in conditioned
media in SMC–monocyte co-culture is mediated by soluble factors
and IL-6 trans-signaling [30].

Basal level of MMP-9 expression in SMC is low, but TNFα induces its
up-regulation via activation of NF-kB and AP-1 [33,34]. Our experiments
revealed that the monocyte–SMC interaction by CX3CL1–CX3CR1 bind-
ing promotes the gene and protein expression of MMP-2 and MMP-9
in each cell type. Moreover, co-culture of SMCwith activatedmonocytes,
induced an additional increase in MMP-9 in both cell types. Blocking the
monocyte CX3CR1 (by anti-CX3CR1 or CX3CR1 knockdown) before cell
interaction, significantly reduces the MMP-9 mRNA in both, monocytes
and SMC. In contrast, the MMP-2 mRNA and protein expression was
not affected by CX3CR1 blocking on monocytes, suggesting that other
factors produced during monocyte–SMC interaction are involved, as is
the case of MMP-1 whose increase, was demonstrated to be dependent
on soluble factors besides the direct cell–cell contact [13].

CX3CR1 and CX3CL1 are present in the atherosclerotic lesions [35]
mediating the heterotypic anchorage between monocytes/macro-
phages and SMC [17]. Moreover, the increased expression of
CX3CR1 on monocytes leads to their differentiation toward macro-
phages [27,36]. In this context, our data showing that SMC–monocyte
interaction up-regulates the expression of CX3CR1, together with the
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results indicating a significant increase (~20 times) in CD36 expres-
sion in isolated monocytes after interaction with SMC (data not
shown), suggest that the contact between these cells participates to
the differentiation of monocytes toward the macrophage-phenotype.
TNFα increases the fractalkine expression in SMC [26]. Therefore,
in some experiments, to favor the cell–cell contact via CX3CL1–
CX3CR1 axis, before co-culture, SMC were stimulated with TNFα.
We found that the interaction between TNFα-activated SMC and
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monocytes generated an increased induction only for MMP-9,
CX3CR1 and TNFα (at protein level) and not for IL-1β or IL-6. The re-
sults underline that TNFα, MMP-9 and CX3CR1 regulation is depen-
dent on CX3CL1–CX3CR1 pair.

Since it was reported that soluble fractalkine is released from acti-
vated SMC [37], we questioned whether CX3CL1 shedding may take
place during the interaction between monocytes and SMC. To uncover
if soluble factors interfere in the induction of themoleculeswhich dem-
onstrated to be dependent on CX3CL1–CX3CR1 binding we analyzed
the effect of conditionedmedium (CM) isolated from SMC onmonocyte
and of CM from monocytes to SMC. The experiments showed that the
CM from monocytes does not affect the TNFα, MMP-9 and
CX3CR1 expression in SMC, but the CM from SMC increased the expres-
sion of TNFα and MMP-9 in monocytes (Supplementary Fig. 3C, D, F).
These results indicate that soluble factors released by SMC, affect the
TNFα and MMP-9 expression in monocytes.

AP-1 and NF-kB are inducible transcription factors critical for the
expression of many genes involved in the inflammatory response
[38]. Our experiments revealed that these transcription factors are im-
plicated in the induction of cytokines andMMPs uponmonocyte–SMC
interaction. Silencing of p65 (NF-kB subunit) led to the down-
regulation of IL-6 and IL-1β whereas c-jun (AP-1 subunit) silencing
led to down-regulation of TNFα, CX3CR1, and MMP9. Interestingly,
AP-1 is involved in the induction of molecules that are CX3CL1–
CX3CR1 dependent, suggesting that this pair trigger the signaling
pathway that leads to activation of AP-1 in SMC. This is also supported
by the Western blot results showing that blocking CX3CR1 on mono-
cytes prior to interaction with SMC reduced phospho c-jun activation.

It was shown that MMP-9 and CX3CR1 are regulated by activation
of AP-1 and NF-kB transcription factors by a process that is dependent
on phosphorylation of different MAPK [33,39,40]. We found that
p38MAPK activation increased significantly in both, SMC and mono-
cytes. Moreover, in SMC, the p38MAPK activation was dependent on
CX3CL1–CX3CR1 binding, suggesting its role in the activation of
p38MAPK pathway.

The MAPK cascade is a common signaling pathway by which G
protein-coupled receptors initiate functional cellular responses [41],
with a role in the regulation of TNFα, IL-6, and IL-1β [42]. The
p38MAPK regulate the c-Jun transcription in response to stress, cyto-
kine, and mitogenic stimuli [43] and contribute to NF-kB activation
[44]. Hence, we presume that the activation of p38MAPK by monocyte–
SMC interaction activates the NF-kB and AP-1 transcription factors that
stimulate the subsequent production of cytokines and MMPs.

Evaluation of the oxidative stress in cells after their interactions
showed that the intracellular reactive oxygen species was significant-
ly increased in SMC and decreased in monocytes (Supplementary Fig.
4A). Moreover, we found that the monocyte–SMC interaction did not
induce apoptosis of monocytes (Supplementary Fig. 4B). Blocking the
CX3CR1 on monocytes before the interaction with SMC had no effect
on monocyte apoptosis, indicating that the CX3CL1–CX3CR1 interac-
tion is not involved in the apoptotic process. These results corrobo-
rate well with previous reports showing that upon interaction
between SMC andmonocytes, the former protect monocytes from ap-
optosis by a process dependent on VCAM-1 signaling [36].

Study limitation: In this study we have used a human aortic SMC
line and the monocytic cell line U937. Further studies employing
human monocytes and primary aortic SMC will be carried out to
strengthen the significance of our novel observations.

In conclusion, the new findings reported here are: (1) the interaction
between SMC and monocytes up-regulates TNFα, IL-1β, IL-6, CX3CR1,
MMP-2 andMMP-9 expression in each cell type; (2) activation of mono-
cyte before cell interaction induces a further increase in TNFα andMMP-9
expression; (3) the expression of TNFα, CX3CR1 and MMP-9 is depen-
dent on CX3CL1/CX3CR1 axis; (4) IL-1β and IL6 up-regulation is indepen-
dent of CX3CL1/CX3CR1 pair; (5) CX3CL1/CX3CR1 binding triggers the
activation of AP-1 transcription factor. The novel data extend the reported
role of fractalkine and its receptor and suggest that within the plaque, the
cross talk between monocytes and SMC amplifies the inflammatory re-
sponse via CX3CL1–CX3CR1 axis that function as inductor of critical mol-
ecules for atheroma progression. Therefore, the CX3CL1–CX3CR1 pair
may constitute a novel therapeutic target to interrupt/retard the inflam-
matory process associated to atherogenesis.

Supplementary materials related to this article can be found on-
line at doi:10.1016/j.bbamcr.2011.08.009.
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