3 research outputs found

    Expoldb: expression linked polymorphism database with inbuilt tools for analysis of expression and simple repeats

    Get PDF
    BACKGROUND: Quantitative variation in gene expression has been proposed to underlie phenotypic variation among human individuals. A facilitating step towards understanding the basis for gene expression variability is associating genome wide transcription patterns with potential cis modifiers of gene expression. DESCRIPTION: EXPOLDB, a novel Database, is a new effort addressing this need by providing information on gene expression levels variability across individuals, as well as the presence and features of potentially polymorphic (TG/CA)(n )repeats. EXPOLDB thus enables associating transcription levels with the presence and length of (TG/CA)(n )repeats. One of the unique features of this database is the display of expression data for 5 pairs of monozygotic twins, which allows identification of genes whose variability in expression, are influenced by non-genetic factors including environment. In addition to queries by gene name, EXPOLDB allows for queries by a pathway name. Users can also upload their list of HGNC (HUGO (The Human Genome Organisation) Gene Nomenclature Committee) symbols for interrogating expression patterns. The online application 'SimRep' can be used to find simple repeats in a given nucleotide sequence. To help illustrate primary applications, case examples of Housekeeping genes and the RUNX gene family, as well as one example of glycolytic pathway genes are provided. CONCLUSION: The uniqueness of EXPOLDB is in facilitating the association of genome wide transcription variations with the presence and type of polymorphic repeats while offering the feature for identifying genes whose expression variability are influenced by non genetic factors including environment. In addition, the database allows comprehensive querying including functional information on biochemical pathways of the human genes. EXPOLDB can be accessed a

    Population Genetic Structure of Peninsular Malaysia Malay Sub-Ethnic Groups

    Get PDF
    Patterns of modern human population structure are helpful in understanding the history of human migration and admixture. We conducted a study on genetic structure of the Malay population in Malaysia, using 54,794 genome-wide single nucleotide polymorphism genotype data generated in four Malay sub-ethnic groups in peninsular Malaysia (Melayu Kelantan, Melayu Minang, Melayu Jawa and Melayu Bugis). To the best of our knowledge this is the first study conducted on these four Malay sub-ethnic groups and the analysis of genotype data of these four groups were compiled together with 11 other populations' genotype data from Indonesia, China, India, Africa and indigenous populations in Peninsular Malaysia obtained from the Pan-Asian SNP database. The phylogeny of populations showed that all of the four Malay sub-ethnic groups are separated into at least three different clusters. The Melayu Jawa, Melayu Bugis and Melayu Minang have a very close genetic relationship with Indonesian populations indicating a common ancestral history, while the Melayu Kelantan formed a distinct group on the tree indicating that they are genetically different from the other Malay sub-ethnic groups. We have detected genetic structuring among the Malay populations and this could possibly be accounted for by their different historical origins. Our results provide information of the genetic differentiation between these populations and a valuable insight into the origins of the Malay sub-ethnic groups in Peninsular Malaysia

    Genetic dating indicates that the Asian-Papuan admixture through Eastern Indonesia corresponds to the Austronesian expansion

    No full text
    Although the Austronesian expansion had a major impact on the languages of Island Southeast Asia, controversy still exists over the genetic impact of this expansion. The coexistence of both Asian and Papuan genetic ancestry in Eastern Indonesia provides a unique opportunity to address this issue. Here, we estimate recombination breakpoints in admixed genomes based on genome-wide SNP data and date the genetic admixture between populations of Asian vs. Papuan ancestry in Eastern Indonesia. Analyses of two genome-wide datasets indicate an eastward progression of the Asian admixture signal in Eastern Indonesia beginning about 4,000-3,000 y ago, which is in excellent agreement with inferences based on Austronesian languages. The average rate of spread of Asian genes in Eastern Indonesia was about 0.9 km/y. Our results indicate that the Austronesian expansion had a strong genetic as well as linguistic impact on Island Southeast Asia, and they significantly advance our understanding of the biological origins of human populations in the Asia-Pacific regionclose222
    corecore